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Abstract

In practice, under the conditions of perfection and constructive development of modern equipment and machines, nonlinear mechanical systems with distributed 
parameters are often encountered, which, depending on the principles of operation, are affected by vibration shock. Therefore, the study of vibration shock processes of 
the mentioned systems has great theoretical and practical importance and as a result to determine the optimal parameters of vibration protection devices to ensure their 
safe operation. In our case, the displacement fi eld of two interacting non-linear mechanical systems with distributed parameters is considered, when their interaction is 
of vibration shock nature. Obviously, the mentioned events are more pronounced when the self-oscillation frequency of one or both systems momentarily approaches the 
frequency of forced vibration shock processes. In addition, critical moments are fi xed during the phase shifts of forced oscillations of oscillatory systems, in this case, the 
frequencies of forced oscillations approach mutually opposing phase moments. By choosing the optimal parameters of hysteresis losses, it is possible to almost exclude 
sub-harmonic modes superimposed on the main resonance modes in vibration shock processes.

During hysteresis losses of the parabolic type, the value of μ changes automatically in connection with impulsive loads, which will allow us to transfer the vibration 
shock processes to automatic modes and, accordingly, the practically safe operation of the mentioned systems.
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Introduction

In our case, the displacement fi eld of two interacting 
distributed parameter non-linear mechanical systems is 
considered, when their interaction is vibration-shock in nature, 
and there is a pre-interval Δ > 0 between them (Δ is the interval 
between the displacements of non-linear mechanical systems), 
and the interaction angle changes in the interval 0 <  < 900, 
and the vibration shock process has a periodic character. In this 
case, the interaction of the mentioned systems is described by 
the function

   , , , 1, 2f x t f x t T jj j j j  

where T is the interaction period; x1 and x2 - are the coordinates 
of the longitudinal movement of the system, and either 

,1 2x j j j     (where 1 j  and 2 j  are the corresponding 

geometric dimensions of the system). Obviously, the vibration 
displacement of both systems has a random character and 

is completely described by the function  ,U x tj j  during 

vibration shock processes, the equations of motion of the 
interacting systems in our case will have the form (j=1, 2)
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where  is the Dirac functionaries; 1,j - Corner symbol; aj - 
propagation speed of elastic waves in systems; bj - viscous 
resistance coeffi cient of vibration shock systems [1]; 

mj - mass of interacting systems;  sin0f t   - disturbing 

power; x22 - the distance from the point of concern to the anti-

vibration means;        0, , , ,2 12 1 11t T U t U t U t     - 

relative coordinate;  ,1 2 2x x   - rate of damping (harmful 

energy absorption) in the fi rst system;  ,2 U U   - power 

function transferred to the second system. These functions 
characterize the vibration shock force between the systems. In 
this case, the initial and boundary conditions for fi nding the 
displacement fi eld of interacting systems are zero. The action 
of gravity is not taken into account in the equations of motion. 
Vibration shock occurs during the rotation of the fi rst system 
about its 0Z axis, with angular velocity , the fi rst system is a 
completely rigid body [2]. The mechanical model of interacting 
systems is presented in the fi rst fi gure, where v  the velocity 
vector fi eld is determined by the following relationship Figure 
1.

 v , 0 0

i j K

r y i x j

x y z

       

 

  

v  - the rotor of the speed vector fi eld characterizes the 
system winding process, which in our case is determined by 
the following formula

v 0 0 2

0

i j K

rot i j K
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y x
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as we can see, in this case, rot v  is a constant vector and is 
directed in the direction of the OZ axis, and its modulus is equal 

to double the angular velocity of rotation v 2rot 


.

From the fi rst equation, let's move on to integration-
differential equations of interacting systems, where 

 ,1 2 2x x   and  ,1 U U   and are non-linear functions, and 

we are looking for a solution considering the periodicity of T. 
Periodic modes that satisfy the fi rst equation will also satisfy 
the following equations
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where the periodic Green's function for nonlinear mechanical 
systems with distributed parameters has the form

   
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

The last function characterizes the dynamic operation of 
the given system with superimposed frequency k from point 
yj to point xj.

The function  ,0U x j tj  in this case is defi ned by the 
following equation
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It can be seen from equation (2) that the displacements 
defi ned in one period of vibration shock during interaction take 
the form of a parametric representation

   , , ( 1) v ( , , )0 0 1
jU x t U x t F x tj j j j jj j     ,             (4)

where the momentum of the force and the phase of the oscillations 

satisfy the conditions    1 ( ) 0;0F m R U U    
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Figure 1: Model of two interacting mechanical systems.
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, U is the relative coordinate; R [0,1] - system state recovery 

coeffi cient. Accordingly, we will have 0 0 0F F F   - 

which is the sum of the loading and unloading stresses 

1 2; ,0 0
1 2

m m
F nU F mU mt

m m
    


   - is the reduced mass 

[3].

The goal of our research is to determine  ,0U x tjj  and 

 v , ,1x tj j j  , and from equation (4) determine the fi eld 

of corresponding displacements ( , )U x tj j  and ( ,0)U xj j .

If we look for a general solution in the form of an expansion 
of the own forms of free oscillations, then we can present the 
periodic Green's function in the following form,
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                   (5)

where  0, ,t T CKj  are the roots of the following equation

1C tgC mj j j j
  ,

2 2; 1a C dj jKj Kj Kj Kj Kj Kj      ,

the Kj  are frequencies of the given system's own oscillations, 
in addition

2 2 2 2, 1b Cj jKj Kj Kj     and 

  12 4 ;jKj Kj  


 

μ is the coeffi cient of absorption of harmful energies, j - 
are the frequencies of forced oscillations of vibration shock 
processes, 

when ,j Kj   then v ( , , )x tj j j  . 

Methods

In this case, an elastic-damping ring is included in both 
interacting systems, which is characterized by parabolic type 
hysteresis absorption ability, so all members of the equation 
(5) contain a multiplier with exponential suppression of 
oscillations, therefore, over time, the values   of the second 
terms in the equation (4) approach zero, and the impulsive 
forced oscillations are defi ned only with the fi rst members. To 
fi nd the general solution U0j (xj,t), in equation (3) it is allowed 
that U0j = 0, as a result of which we get 

     
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2
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


            (6)

where the hysteresis losses of harmful energies are described 
by the equation [4],

  2, (1 sgn )1 2y y K y y    ,

1,if  0,  then 0y U                   (7) 

K2 - is the average dynamic stiffness of the anti-vibration 
agent;  - is the rate of absorption of harmful energies of forced 
vibration shock oscillations [5]. Accordingly, from equation 
(5), we have
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                    (8)

If we insert the equations (7) and (8) into the equation (6) 
and integrate, we get

     , sin , , sin02 1 0 1 1 22U x t f t A x x i     
,

where   is a phase shift [6],

1 arg ; arg1 1A A        ,

arg A1 is the principal value of the A1 amplitude argument, 
and the modulus is defi ned by the equations [7] 
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                (9)

2 2 2 241 1
1 4

K KdK
    




  . 

The analysis of equations (4), (5), and (9) shows that even 
in the case of increased hysteresis losses of harmful energies 
in interacting vibration shock systems [8], it is impossible to 
completely exclude the impulsive loads acting on the systems 
and the corresponding critical and resonance events, which are 
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accompanied by periodic vibration shock processes. Obviously, 
the mentioned events are more pronounced when the self-
oscillation frequency of one or both systems momentarily 
approaches the frequency of forced vibration shock processes. 
In addition, critical moments are fi xed during the phase shifts 
of forced oscillations of oscillatory systems, in this case, the 
frequencies of forced oscillations approach mutually opposing 
phase moments. It can be seen from equation (9) that by 
increasing the damping capacity, the amplitudes of both the 
current and resonant modes decrease, accordingly, the impulse 
loads acting on the systems decrease. It is not excluded that 
sub-harmonic resonance modes may also develop in systems 
during forced vibration shock processes. In this case, the 
work of dissipative forces in one period of vibration shock is 
determined by the display

2 2
2 1 sgn20

y
E K y dtD t







 


 
 
 



,             (10)

and the work of the disturbing force takes into account the 
orthogonal of the harmonic function

 
2 2

sin ( ) sinB 0 0 2 00
E f t y t dt f y




       



  ,       (11)

where 0 2    , (2 - is the new phase shift indicator). The 

equation for balancing the work of dissipative and disturbing 
forces will take the form in this case

 
 

21
sin0 2 0 2 1

R I
f y ED R

 


 


 .              (12)

It can be seen from equation (12) that by selecting the 
optimal parameters of hysteresis losses,

it is possible to almost exclude sub-harmonic modes 
superimposed on the main resonant modes in vibration 
shock processes. The optimal values   of impulses of forced 
oscillations, their duration and phases, which ensure minimum 
vibration loads of vibration shock systems, are determined by 
the following formulas

2 1 1
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K Ktg
K
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
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1
22 2 2 2 22 sin 2 4 ,1 1 1 1
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j j
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

    
 
 
 

 



 
       
       
                  (13)

where 01
krU - is the critical value of displacement when 

141K    , then 1A  , i.e.  ,02 1U x t  will take its 

maximum value when U01 = 0, then    , v , ,1 1 0 1 1 1U x t F x tj    

and under the conditions mentioned above it will take its 
maximum value. 

Conclusion

From the analysis of the inequalities (13) it can be seen that, 
in the case of parabolic type hysteresis losses, the value of μ 
changes automatically in relation to impulsive loads, which 
will allow us to transfer vibration processes to automatic modes 
and, accordingly, practically safe operation of the mentioned 
systems. The obtained results are of particular importance 
in heavy machinery construction, and their consideration 
and implementation will increase the safe and long-lasting 
operation of manufactured products.

References

1. Gavasheli LSh. Theory of vibration protection of nonlinear mechanical 
systems. Metsniereba, Tbilisi. 2006; 272.

2. Gavasheli L, Gavasheli A. Random oscillations of nonlinear systems with 
distributed Parameter. Ann Math Phys 4(1): 084-091. 2021; DOI https://dx.doi.
org/10.17352/amp.000027 

3. Li H, Dai F, Du S. Broadband energy harvesting by exploiting nonlinear 
oscillations around the second vibration mode of a rectangular piezoelectric 
bistable laminate. Smart Mater Struct. 2015; 24.

4. Mahmoudi S, Kacem N, Bouhaddi N. Enhancement of the performance of 
a hybrid nonlinear vibration energy harvester based on piezoelectric and 
electromagnetic transductions. Smart Mater Struct. 2014; 23: 075024. 

5. Feng JQ, Xu W, Niu YJ. Chattering bifurcations in a Duffi  ng unilateral vibro-
impact system. Acta Phys Sin. 2010; 59: 157–163.

6. Li F, Ding WC. Analysis of sticking motion in a vibro-impact system with 
multiple constraints. J Vib Shock. 2010; 29: 150–156.

7. Zhang H, Ding WC, Li F. Dynamics of a two-degree-of-freedom impact system 
with clearance and pre-compressed spring. Eng Mech. 2011; 28: 209–217.

8. Su F, Wang CS. Chaos evolution of two-degree-of-freedom impact system with 
unilateral rigid constraints. Mech Res Appl. 2012; 4: 69-71.

 

 
 

https://www.peertechzpublications.org/submission


