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In this note we present some numerical simulations of the asymptotic behavior of a Generalized Liénard Equation, taking into account a recently defined differential
operator. We must point out that these numerical variations have not been obtained as usual: by varying the functions of the right member of the system considered, but,
on the contrary, by varying the kernels and the order of the generalized operator used. The above provides breadth and generality to the results obtained, which complement

some known in the literature.

Introduction

The classical method of Lyapunov for studying stability
and asymptotic stability is based on a suitable function
satisfying some properties (called Lyapunov's Functions). This
method, usually named the Second Method, originated in the
fundamental memoir of the Russian mathematician Alexander
Mijailovich Lyapunov, published in Russian in 1892, translated
into French in 1907 (reprinted in the forty) and in English years
later, see [1]. Since that time this area has been extensively
(perhaps even exhaustively) investigated. Statements and
proofs of mathematical results underlying the method and
numerous examples and references can be found in the books
[2-7] and the bibliography listed therein.

The Liénard Equation, one of the icons of Nonlinear
Analysis, is a second-order nonlinear differential equation
that appears in various areas of physics and engineering. Its
importance lies in several aspects:

Nonlinear oscillations

The Liénard Equation describes nonlinear systems that
exhibit damped and forced oscillations. This is crucial to
understand and model phenomena in which linearity is not
sufficient to represent the behavior of the system.

Study of non-conservative systems

The equation is useful for studying non-conservative
systems, where energy is not conserved. This is common in
systems that experience friction, drag, or other dissipative
forces.

Chaos theory

The Liénard Equation can show chaotic behavior, meaning
that the solutions are highly sensitive to initial conditions. The
study of chaotic systems is crucial in chaos theory and has
applications in the prediction of certain natural phenomena.
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Stability analysis

The equation is used in the stability analysis of nonlinear
dynamic systems. The study of stability is essential to ensure
that a system responds predictably to perturbations and
changes in initial conditions.

Control engineering

In the design of nonlinear control systems, the Liénard
Equation is relevant to understanding and predicting the
behavior of physical systems. This is crucial in engineering
applications, such as industrial process control and
electromechanical systems.

Mathematical research

The equation has been the object of study in mathematical
research, contributing to the development of methods and
techniques to solve nonlinear differential equations. This has
broader implications in the field of differential equation theory
and dynamical systems.

In summary, the Liénard Equation plays a key role in the
understanding of non-linear, chaotic, and non-conservative
systems in various scientific and engineering disciplines. Its
study has led to the development of analytical and numerical
tools that are fundamental for the understanding and design
of complex and dynamic systems. Hence, research aimed at
the qualitative study of Liénard-type system solutions has an
impact not only from a theoretical point of view but also in
applications.

On the other hand, the problem of continuability of
solutions is of paramount importance in the study of qualitative
properties. For example, in [8] some properties of the system

{x:a(y)—ﬂ(y)F(X), (1)

y=-9(x),

was studied under suitable assumptions. A particular case
of the above system is the well-known Liénard equation

X+ f(x)x+g(x)=o0, (2)

Where f(x), g(x) are continuous functions f,g:R—-R and
g(0) =0, are the subject of detailed studies by various authors
due to many applications in a variety of domains in science
and technology, see for example [9-16] and classical sources
(17-19].

Let F(x)= _[:f (s)ds we obtain an equivalent system to
equation (2):
x=y-F(x),
{y = g(x), (3)

Fractional calculus studies problems with derivatives and
integrals of real or complex order. As a purely mathematical
field, the theory of fractional calculus was brought up for the
first time in the XVIIth century and since then many renowned
scientists worked on this topic, among them Euler, Laplace,
Fourier, Abel, Liouville, and Riemann (see [20]). Today there is a
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vast literature on this subject, and many works and researchers
multiply day by day in the world showing the most varied
applications. The most common applications are currently
found in Rheology, Quantum Biology, Electrochemistry,
Dispersion Theory, Diffusion, Transport Theory, Probability
and Statistics, Potential Theory, Elasticity, Viscosity, Automatic
Control Theory, .

After presenting the fractional integrals it is possible
to define the fractional derivatives associated with these
operators. Fractional derivatives and fractional integrals are
extensions of ordinary calculus, by considering derivatives
of arbitrary real or complex order, and a general form for
multiple integrals. Although mathematicians have wondered
since the very beginning of calculus about these questions,
only recently they have proven their usefulness and since then
important results have appeared not only in mathematics but
also in physics, applied engineering, biology, etc. One question
that is important is what type of fractional operator should be
considered since we have in hand several distinct definitions
and the choice depends on the considered problem.

In the literature many different types of fractional
operators have been proposed, here, we show that various
of that different notions of derivatives, can be considered
particular cases of our definition and, even more relevant, that
it is possible to establish a direct relationship between global
(classical) and local derivatives, the latter not very accepted
by the mathematical community, under two arguments: their
local character and compliance with the Leibniz Rule. To
facilitate the understanding of the scope of our definition, we
present the best-known definitions of integral operators and
their corresponding differential operators (for more details
you can consult [21]). Without many difficulties, we can extend
these definitions, for any higher order.

A general integral operator

In [22] was presented an integral operator generalized,
which contains in particular cases, many of the well-known
integral operators, both integer order and not. First, we will
present the definition of the generalized derivative, see [23]
(see also [24] and [25]) which was defined in the following way.

Definition 1: Given a function f:[0,+w)—>R. Then the
N-derivative of f of order o is defined by

N () = lim L (L eFG) = fO "
&0 &

for all t>0, ae(0,1) being F(o,t) is some function. If f is o -
differentiable in some (0,), and HimN;f(f) exists, then define
N: f (0)=}£{)§1Nﬁf (t), note that if f is differentiable, then
NZf(t)= F(t,2)f'(¢) where f'®) is the ordinary derivative.

Some particular cases of this operator are the following:
I) F(x,a) = 1, in this case, we have the ordinary derivative.

II) F(x,a)=e*" . In this case we obtain, from Definition 1,

the non-conformable derivative N¢f(x) defined in [26] (see
also [27]).
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III) F(x,a) > e this kernel satisfies that F(x,a) > 1 as o >
1, a conformable derivative used in [28].

IV) F(x,a) > x*= with this kernel we have F(x,a) > 0as o> 1
(see [29]), a conformable derivative.

V) F(x,a.) - x* with this kernel we have F(x,a) > x as o. > 1 (see
30]). It is clear that since it is a non-conformable derivative,
the results will differ from those obtained previously, which
enhances the study of these cases.

VI) F(x,0) » x@ with, this kernel we have F(x,a) > x*as a1
This is the derivative ~ > studied in [31]. As in the previous case,
the results obtained have not been reported in the literature.

Now, we give the definition of a general fractional integral.
Throughout the work, we will consider that the integral
operator kernel T defined below is an absolutely continuous
function.

Definition 2: Let I be an interval {S®-@1€land a€R p,
integral operator "™ is defined for every locally integrable function
fonlas

Jaqxw=ﬁTﬁ2ym 5)

Remark 3: It is easy to see that the case of the J1 operator
defined above contains, as particular cases, the integral operators
obtained from conformable and non-conformable local derivatives,
Interested readers can consult [22].

The following results are generalizations of the known
results of the integer order Calculus.

Proposition 4: Let I be an interval IcR,acl, 0<a<I and f
a * -differentiable function on I such that fisa locally integrable
function on L. Then, we have for all xel

Jia (INZ(F)() = f(x) - f(a).

Proposition 5: Let I be an interval  S®-a€land ac(.1]

N7U7 . (FX) = f(x),

for every continuous function f on I and a,tel.

In [29] it is defined the integral operator J;, for the choice

of the function F given by F(x,a)=x"“, and [29, Theorem 3.1]
shows

NI (DOO= F00,

for every continuous function f on I, a, xel and ae(0,1].
Hence, Proposition 5 extends to any T of this important equality.

Theorem 6: Let I be aninterval I c R, a,bel and a €R . Suppose
that f,g are locally integrable functions on I, and k-k, €R Then we
have

(1) Jra(kf+k,g)X)=kJ7 f(X)+k,J7 ,g(x),

() if f>g, then Ji, f()=TJ;,9(X) for every tel with t=a,
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FOO|< 5, Ifl0) for every tel with t2a,

(4) .[ f(S) ds JiofCO)=T7,f0)=T7 . fOO(b) for every tel.

Let C‘[a,b] be the set of functions f with first ordinary
derivative continuous on [a,b], we consider the following
norms on C'[a,b]:

Pl =m0 [Pl ={maxlf 0 a0
[a,b] [a,b] [a,b]

Theorem 7: The fractional derivatives Ny . f(x)and Ny, f(x)
are bounded operators from C'[a,b] to Cla,b] with

Ve, S0/ KJEL «©

Ng, FOO|<KE] £, @

where the constant K, may be dependent on the derivative
frame considered.

Remark 8: From previous results we obtain that the derivatives
NE, f(x) and NZ, f(x) are well defined.
Theorem 9: (Integration by parts) Let f g:[a,b]—>R

differentiable functions and ae(o,1]. Then, the following property
hold

J5 0 (W, G0N =[ F00g00T - Tz (W, FCO). (8)

In [32] the following system was studied:

N2x = E(x,y) } )

N7y =-p(y)g(x)|’

where  E(x,y) = a(x,)H(x,y) with H(x,y) = H(a(y) = B(Y)F (x))
while the functions in above system are continuous real
functions in their arguments.

Throughout this paper we will use the following notations
(F(x) as above and E,, is the biparametric Mittag-Leffler
function):

G0 = [[g(s)ds, Ex, (v) = Ez, (0,) = [ A2 (@) ¢

p(s)

Our objective is to illustrate that in the system (9), under
different local operators, the examples and counterexamples
known from the literature continue to hold. Obviously, our
conclusions cover the systems (1) and (3), and therefore, for
the equation (2).

Results
The following results are useful in the subsequence ([32]).
Theorem 10: Under the following assumptions:
i) E(x,y) is a differentiable function with
su @(X ) < +o0
Rzp oX 2

and

lim sup E7 (y) = +oo.
Yoto
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i) p(y)>o0 forall Y& |

iii) There exists a positive constant 1 such that I)F(x)=-2

, J.[x(s)g(x(s))dsz—ﬂ forall xeR and \F(’R‘)|<+°°.

iv) geC*(r*) such that a(x,y)>o0 for all x and y, and

lim sup a(x,y) <+» forally.

X—t0

then all solutions of system (9) can be defined for all t.

Theorem 11: In addition to i) and iv) suppose that the following
assumptions are satisfied:

ll*) P(Y)>0 for all yeR , P(0) = o0 ,With p(y):J‘:%
and LimsupG(x)=+wo ,

X—to

iii*) there exists a positive constant A>0 such that

g(x)F(x)>-2 forall xeR and E;,(y)>-2 forall yeR.
Then all solutions of (9) exist in the future.

Remark 12: The above results allow us to obtain new conditions
for the boundedness of the solutions of (1) and (2). Thus, for example,
for the system (1) the following result is easily obtained from
Theorem 10:

Theorem 13: Under the following assumptions:
1) FV(X)> -0 and lim 06(3/)=i°0-
Yoto

sup [F(x)| < +e.

xeR

then all solutions of system (1) can be defined for all t.
The Theorem 13 extends those obtained in [8] and [14].

Remark 14: When a(x,y) =1and g = 1, our results agree with the
Theorems 2.1 and 2.2 obtained in [33].

Remark 15: Our results are consistent with those reported in the
literature for the Liénard equation, particularly with those obtained
in [9-16].

Some numerical disquisitions

Taking into account Definition 1, we consider the
generalized Liénard type system of (9). We must point out
that the two-dimensional systems presented below are
studied under classical ordinary operators. The interesting
thing about our study is that they are considered under new
local generalized differential operators, both conformable and
non-conformable. All this is possible, given the generality and
breadth of the operator of Definition 1, since it allows "varying"
both the kernel itself and the order of the considered operator.
The classical case (obtained when F = 1) is added as a reference
for the reader and that supports our conclusions.

We can also point out two additional details. First, given the
intention of showing different variations of the system (9), we
have consulted various sources dating back 30 years, they are
results established as starting points for various subsequent
investigations, and second, we could consider two large
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classes of systems presented, those that satisfy the Theorems
indicated above and those that do not satisfy some of the stated
considerations and the reason is the following: both classes are
"good" in the following sense: they are asymptotically stable or
unstable. This allows us to affirm that both behaviors continue
to be maintained in the generalized case.

Casel

The conditions of Theorem 13 are satisfied ([34,35])
(Figures 1,2).

Nix=y-(x*+x),
Niy=-x, (10)

Casell

The conditions of Theorem 13 hold, with A=1 (adapted from
[36]) (Figures 3,4).

a X
NTx:y—[?—xj,

" x*(x* -
NTV:_X[“'%}

Casellll

(11)

The function F does not satisfy the conditions of Theorem
13 so there are solutions that cannot be extended to the future
(see [37,38]) (Figures 5,6).

Nix :y—{3)2( —xj,

N'{fly :7X3y

(12)

1.0 LOf L0

40D

0.5 0.5

0.a 0.0 0.0

00 05 10 00 05 10 R TR Tl
X X

Figure 1: Numerical solutions of the Liénard system of Case | for (a) classical,
(b) conformable with F(t,¢)=t%, and (c) conformable with F(t,a)=e% "
derivatives. Red thin curves in panels (b) and (c) are solutions for the orders a =
0.975,0.925,0.9. The classical derivative solution is also included in panels (b) and
(c) as a reference (black dotted curve). The blue dot indicates the initial condition.

1.0 1.0 1.0

- 0.5 0.5 - 0.5

0.0 0.0 0.0

0.0 0.5 1o 0.0 0.5 1.0 0.0 0.5 1o
X X

Figure 2: Numerical solutions of the Liénard system of Case | for (a) classical, (b)
non-conformable with F(t,a):e‘ﬂ , and (c) non-conformable with F(t,a)=t"

derivatives. Red thin curves in panels (b) and (c) are solutions for the ordersa =

0.975,0.925,0.9. The classical derivative solution is also included in panels (b) and

(c) as a reference (black dotted curve). The blue dot indicates the initial condition.
190
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Case IV

In this case, there is no A>0 such that g(x)F(x)>-4. As in
the previous case, there are solutions that cannot be extended

([39D.

Nix = +x/5xz,
{T Y (13)

N;nyXa

Remark: The same graph did not appear. We have the
following for the common case, with time steps dt = 0.001 and
total time t = 0.3:

Some variations were obtained without square root and
F(x)=-x> and g(x)=-x3, with step dto.o1 and total time t = 3:

We also "approximate" the value of the root by considering
F(x)=—(x*)(0.99+2) and g(x)=-x3, with step dt = 0.001 and total
time t = 8, obtaining:

CaseV

In ([40]), the following system with a limit cycle was
studied (Figures 7,8).

{N;x:y—x(x—1)(x+1.1), (14)

N;y = _XB)

Case VI

The following lineal case can be studied as the limiting case
of the equation 2, with F = 1 and g(x)=x. That is, it satisfies all
the conditions of the Theorem 13 (Figures 9,10).

2 ~—
=0 = () @ = () (c)
_5 _5 k _9 K
2 -2 0 2 v

X X X

L

Figure 3: Numerical solutions of the Liénard system of Case Il for (a) classical,
(b) conformable with F(t,¢)=t%%, and (c) conformable with F(t,a)=e% "

derivatives. Red thin curves in panels (b) and (c) are solutions for the ordersa =
0.975,0.925,0.9. The classical derivative solution is also included in panels (b) and
(c) as a reference (black dotted curve). The blue dot indicates the initial condition.

P = 0 (b)

Figure 4: Numerical solutions of the Liénard system of Case Il for (a) classical, (b)
non-conformable with F(t,a):e’(f" , and (c) non-conformable with F(t,a)=t”

derivatives. Red thin curves in panels (b) and (c) are solutions for the ordersa =
0.975,0.925,0.9. The classical derivative solution is also included in panels (b) and
(c) as a reference (black dotted curve). The blue dot indicates the initial condition.
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(a) 7 (b)

[e]

0.0 0.0 0.0k
! 0 : ]

Figure 5: Numerical solutions of the Liénard system of Case Ill for (a) classical,
(b) conformable with F(t,a)=t®*, and (c) conformable with F(t,a)=e" "

derivatives. Red thin curves in panels (b) and (c) are solutions for the ordersa =
0.975,0.925,0.9. The classical derivative solution is also included in panels (b) and
(c) as a reference (black dotted curve). The blue dot indicates the initial condition.

0.0E 0.0k
0.5 1.0 0.5 1.0 x

Figure 6: Numerical solutions of the Liénard system of Case il for (a) classical,
(b) non-conformable with F(t,a):e‘w ,and (c) non-conformable with F(t,a)=t“
derivatives. Red thin curves in panels (b) and (c) are solutions for the ordersa =
0.975,0.925,0.9. The classical derivative solution is also included in panels (b) and
(c) as a reference (black dotted curve). The blue dot indicates the initial condition.

Figure 7: Numerical solutions of the Liénard system of Case V for (a) classical,
(b) conformable with F(t,ar)=t""*, and (c) conformable with F(t,q)=e% "
derivatives. Red thin curves in panels (b) and (c) are solutions for the orders. a =
0.975,0.925,0.9. The classical derivative solution is also included in panels (b) and
(c) as a reference (black dotted curve). The blue dot indicates the initial condition.

Figure 8: Numerical solutions of the Liénard system of Case V for (a) classical, (b)
non-conformable with F(t,a):e‘ =) , and (c) non-conformable with F(t,a):t"

derivatives. Red thin curves in panels (b) and (c) are solutions for the ordersa =
0.975,0.925,0.9. The classical derivative solution is also included in panels (b) and
(c) as a reference (black dotted curve). The blue dot indicates the initial condition.

Nix=y-x,
{ . (15)

Niy=-x,
Variations

Below we present a group of known results from the
literature, which illustrate the previous conclusions. It is not

Citation: Népoles Valdés JE, Roa PM (2023) Numerical simulations in a generalized Liénard's type system. Ann Math Phys 6(2): 187-195.

DOI: https://dx.doi.org/10.17352/amp.000101



P PeertechzPublications

difficult to verify that if the conditions of Theorem 13 are
satisfied, all solutions can be extended to the future and if those
related to the function F are not met, there are unbounded
solutions in finite time (Figures 11,12).

Example 16 [41]

" X
NTx=y—{x+?j,

(16)
N;y = _X3|
Example 17 [42]
Nix=my- (—3\/Hx + 2.2\/Esin2x),
1
Ney=—x, (17)
m>o0

Observations: Both the value of ™ and ! make the curves
grow very quickly. So much so that the values m = 0.05 and
1<t<5 were considered (Figures 13,14).

Figure 9: Numerical solutions of the Liénard system of Case VI for (a) classical,
(b) conformable with F(t,r)=t%*, and (c) conformable with F(t,a):et(lﬂ
derivatives. Red thin curves in panels (b) and (c) are solutions for the ordersa =
0.975,0.925,0.9. The classical derivative solution is also included in panels (b) and
(c) as a reference (black dotted curve). The blue dot indicates the initial condition.

0.0 05 1.0 0.0 0.5 0 00 05 0

Figure 10: Numerical solutions of the Liénard system of Case VI for (a) classical,
(b) non-conformable with F(t,a):e‘w ,and (c) non-conformable with F(t’a):["

derivatives. Red thin curves in panels (b) and (c) are solutions for the orders a =
0.975,0.925,0.9. The classical derivative solution is also included in panels (b) and
(c) as a reference (black dotted curve). The blue dot indicates the initial condition.

1.00 LOF 100
(&) (b) (e)
0.75 .75 (0L.75

0.50 0.50 (.50

0.25f 0.25 / 0.2

Figure 11: Numerical solutions of the Liénard system of Example 17 for (a) classical,
(b) conformable with F(t,q)=t%), and (c) conformable with F(t,q)=e% "

derivatives. Red thin curves in panels (b) and (c) are solutions for the orders a =
0.975,0.925,0.9. The classical derivative solution is also included in panels (b) and
(c) as a reference (black dotted curve). The blue dot indicates the initial condition.
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1.00 1.00
(a) (h) R0 {e)
0.75 0.75 0.75
0.50 0.50 050
0.25 0.25 0.23
2 = /
0.5 1.0 [159) 1.0 0.0 1.0
¥ b4 x

Figure 12: Numerical solutions of the Liénard system of Example 17 for (a) classical,

(b) non-conformable with F(t, a)=e[w ,and (c) non-conformable with F(t,a)=t*
derivatives. Red thin curves in panels (b) and (c) are solutions for the orders a =
0.975,0.925,0.9. The classical derivative solution is also included in panels (b) and
(c) as a reference (black dotted curve). The blue dot indicates the initial condition.

Figure 13: Numerical solutions of the Liénard system of Example 18 for (a) classical,
(b) conformable with F(t,a)=t""*, and (c) conformable with F(t,c)=e® "
derivatives. Red thin curves in panels (b) and (c) are solutions for the orders a =
0.975,0.925,0.9. The classical derivative solution is also included in panels (b) and
(c) as a reference (black dotted curve). The blue dot indicates the initial condition.

Figure 14: Numerical solutions of the Liénard system of Example 18 for (a) classical,
(b) non-conformable with F(t,ar)=e’ ", and (c) non-conformable with F(t,a)=t*
derivatives. Red thin curves in panels (b) and (c) are solutions for the orders a =
0.975,0.925,0.9. The classical derivative solution is also included in panels (b) and
(c) as a reference (black dotted curve). The blue dot indicates the initial condition.

Example 18 [42]

Nix=my- (—k\MX + I\MSI'HZX),
Niy=-x, (18)

l
k+=>2
m>0 kit

In the following figures 18 was graphed with the values m =
2, k=9/20,I = 6 (Figures 15,16)

Example 19 [43]

N;xzy—k(x%)(xfs),

Néy=-x, (19)
k:i,l
20’25

18 was graphed with the values k = 9/20 (Figures 17,18)

18 was graphed with the values k = 7/25 (Figures 19,20)
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Example 20 [43] (Figures 21,22)

Nix=y-3x(x+1)(x-3), (20)
Niy=-x,

Example 21 [43]

. 64 112 196 Cc ., 36
Nix=y-A| —X"-—=X>+Z=x> - = x* =
X=y [35ﬁx o X+ 3r XXt = xj, (21)

N;y ==X,

C=47,)22.86896 and ) > 0.862

Observations: 1) For all the following cases (ordinary,
conformable, and non-conformable) A = 4.5 was considered.

2) For the common curve (black dotted line) steps of dt =
0.001 and a final time of t, = 0.5 were considered.

3) For the second conformable case in (c) with F(t,a)=e®*"
, even with small steps and maximum execution time of

=

(a) 5 (b) 5

Figure 15: Numerical solutions of the Liénard system of Example 19 for (a) classical,
(b) conformable with F(t,a)=t%"*), and (c) conformable with F(t,a)=e% "
derivatives. Red thin curves in panels (b) and (c) are solutions for the orders a =
0.975,0.925,0.9. The classical derivative solution is also included in panels (b) and
(c) as a reference (black dotted curve). The blue dot indicates the initial condition.

Figure 16: Numerical solutions of the Liénard system of Example 19 for (a)
classical, (b) non-conformable with F(t,a)=e’ ~ and (c) non-conformable with
F(t,)=t“ derivatives. Red thin curves in panels (b) and (c) are solutions for the
orders a = 0.975,0.925,0.9. The classical derivative solution is also included in
panels (b) and (c) as a reference (black dotted curve). The blue dot indicates the
initial condition.

—20 0 —20

—20 0

= Q.______)

Figure 17: Numerical solutions of the Liénard system of Example 20 for (a) classical,
(b) conformable with F(t,a)=t""*), and (c) conformable with F(t,o’)=e® "

derivatives. Red thin curves in panels (b) and (c) are solutions for the orders a =
0.975,0.925,0.9. The classical derivative solution is also included in panels (b) and
(c) as a reference (black dotted curve). The blue dot indicates the initial condition.
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Figure 18: Numerical solutions of the Liénard system of Example 20 for ©)
classical, (b) non-conformable with F(t,a)=e" ", and (c) non-conformable with
F(t,ar)=t“ derivatives. Red thin curves in panels (b) and (c) are solutions for the

orders a = 0.975,0.925,0.9. The classical derivative solution is also included in
panels (b) and (c) as a reference (black dotted curve). The blue dot indicates the
initial condition.

(a) \ (h)
2 2

Figure 19: Numerical solutions of the Liénard system of Example 20 for (a) classical,
(b) conformable with F(t,a)=t%“, and (c) conformable with F(t,a)=e’ H(
derivatives. Red thin curves in panels (b) and (c) are solutions for the orders a =
0.975,0.925,0.9. The classical derivative solution is also included in panels (b) and
(c) as a reference (black dotted curve). The blue dot indicates the initial condition.

Figure 20: Numerical solutions of the Liénard system of Example 20 for (a)
classical, (b) non-conformable with F(t,a)=e' - , and (c) non-conformable with
F(t,ar)=t* derivatives. Red thin curves in panels (b) and (c) are solutions for the
orders a = 0.975,0.925,0.9. The classical derivative solution is also included in
panels (b) and (c) as a reference (black dotted curve). The blue dot indicates the
initial condition.

Figure 21: Numerical solutions of the Liénard system of Example 21 for (a) classical,
(b) conformable with F(t,ar)=t""*, and (c) conformable with F(t,c)=e% "
derivatives. Red thin curves in panels (b) and (c) are solutions for the orders a =
0.975,0.925,0.9. The classical derivative solution is also included in panels (b) and
(c) as a reference (black dotted curve). The blue dot indicates the initial condition.

the program (it was considered dt = 0.00001 and t, = 0.001,
respectively) it was observed that the values of y were
increasingly negative (the value y = -75 was reached for x =).
Therefore, it can be assumed that they did not achieve the same
behavior as in case (b). In fact, for these same values, it can be
observed that with parameter a=0.9 the curve is “faster" (green
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curve), than with 0=0.925 (blue curve) and with «=0.975 (red
curve). For the following graphs, it was decided to maintain
the step values dt = 0.00001 and maximum execution time t, =
0.0001 for the red, blue, and green curves.

(1-a)

£) For the conformable case in (b) with F(t,a)=t it was
enough to consider steps of dt = 0.001 and a final time of t;=0.5
to see the graphs below.

5) For the non-conformable case in (b) with F(t,z)=¢"“ the
steps of dt = 0.001 and a final time of t, = 0.55 and in (c) with
F(t,a)=t the steps of dt = 0.001 and a final time of ¢, = 0.2
(Figures 23,24) .

In addition to (Figures 19, 25,26)[15]

Nix=my —(—k\/ax + lx\/ﬁsinzx),
Noy=-x, (22)

1
k+=—>2
m>o0 >

of (@ ap (b) ople) |

|
- —h = =5 = =5
—10 —10 —10

Figure 22: Numerical solutions of the Liénard system of Example 21 for ©)
classical, (b) non-conformable with F(t,a)=e" , and (c) non-conformable with
F(t,a)=t* derivatives. Red thin curves in panels (b) and (c) are solutions for the

orders a = 0.975,0.925,0.9. The classical derivative solution is also included in
panels (b) and (c) as a reference (black dotted curve). The blue dot indicates the
initial condition.

f
1.10

1.0

0.9

=25 0024 ~35 0.0 75 —25

x e e g
Figure 23: Numerical solutions of the Liénard system of Example 22 for (a) classical,
(b) conformable with F(t,a)=t""*, and (c) conformable with F(t,c)=e® "
derivatives. Red thin curves in panels (b) and (c) are solutions for the orders a =

0.975,0.925,0.9. The classical derivative solution is also included in panels (b) and
(c) as a reference (black dotted curve). The blue dot indicates the initial condition.

LO0F gy 1.00
0.98

= .05
0.95

LO0f g \

Figure 24: Numerical solutions of the Liénard system of Case I for (a) classical,
(b) non-conformable with F(t,az)=€" ", and (c) non-conformable with F(t,a)=t"

derivatives. Red thin curves in panels (b) and (c) are solutions for the ordersa =
0.975,0.925,0.9. The classical derivative solution is also included in panels (b) and
(c) as a reference (black dotted curve). The blue dot indicates the initial condition.
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Figure 25: Numerical solutions of the Liénard system of Example 23 for (a) classical,
(b) conformable with F(t,a)=t®*, and (c) conformable with F(t,a)=e® "

derivatives. Red thin curves in panels (b) and (c) are solutions for the orders a =
0.975,0.925,0.9. The classical derivative solution is also included in panels (b) and
(c) as a reference (black dotted curve). The blue dot indicates the initial condition.

10f(a) LOF ) LOT (¢)
0.5 05 0.5

0.0 0.0 0.0y

0.0 0.5 1.0 0.0 0.5

Figure 26: Numerical solutions of the Liénard system of Example 23 for (a) classical,
(b) non-conformable with F(t,az)=e" , and (c) non-conformable with F(t,ca)=t*

derivatives. Red thin curves in panels (b) and (c) are solutions for the orders a =
0.975,0.925,0.9. The classical derivative solution is also included in panels (b) and
(c) as a reference (black dotted curve). The blue dot indicates the initial condition.

Conclusion

In this work, we have presented a set of examples, known
from the literature, in which the following conclusion can
be seen: The study of the equilibrium points of the ordinary
system provides clues to the behavior of the system under
other differential operators. What does this mean for an applied
researcher or an area related to the physical sciences? It means
that the study of a generalized model must be accompanied by
the qualitative study of the corresponding ordinary system. In
fact, the previous analysis of the corresponding ordinary system
can considerably help the understanding of the simulation of a
system under generalized differential operators.
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