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Abstract

In this note we present some numerical simulations of the asymptotic behavior of a Generalized Liénard Equation, taking into account a recently defi ned differential 
operator. We must point out that these numerical variations have not been obtained as usual: by varying the functions of the right member of the system considered, but, 
on the contrary, by varying the kernels and the order of the generalized operator used. The above provides breadth and generality to the results obtained, which complement 
some known in the literature. 
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Introduction

The classical method of Lyapunov for studying stability 
and asymptotic stability is based on a suitable function 
satisfying some properties (called Lyapunov's Functions). This 
method, usually named the Second Method, originated in the 
fundamental memoir of the Russian mathematician Alexander 
Mijailovich Lyapunov, published in Russian in 1892, translated 
into French in 1907 (reprinted in the forty) and in English years 
later, see [1]. Since that time this area has been extensively 
(perhaps even exhaustively) investigated. Statements and 
proofs of mathematical results underlying the method and 
numerous examples and references can be found in the books 
[2-7] and the bibliography listed therein.

The Liénard Equation, one of the icons of Nonlinear 
Analysis, is a second-order nonlinear differential equation 
that appears in various areas of physics and engineering. Its 
importance lies in several aspects:

Nonlinear oscillations

The Liénard Equation describes nonlinear systems that 
exhibit damped and forced oscillations. This is crucial to 
understand and model phenomena in which linearity is not 
suffi cient to represent the behavior of the system.

Study of non-conservative systems

The equation is useful for studying non-conservative 
systems, where energy is not conserved. This is common in 
systems that experience friction, drag, or other dissipative 
forces.

Chaos theory

The Liénard Equation can show chaotic behavior, meaning 
that the solutions are highly sensitive to initial conditions. The 
study of chaotic systems is crucial in chaos theory and has 
applications in the prediction of certain natural phenomena.
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Stability analysis

The equation is used in the stability analysis of nonlinear 
dynamic systems. The study of stability is essential to ensure 
that a system responds predictably to perturbations and 
changes in initial conditions.

Control engineering

In the design of nonlinear control systems, the Liénard 
Equation is relevant to understanding and predicting the 
behavior of physical systems. This is crucial in engineering 
applications, such as industrial process control and 
electromechanical systems.

Mathematical research

The equation has been the object of study in mathematical 
research, contributing to the development of methods and 
techniques to solve nonlinear differential equations. This has 
broader implications in the fi eld of differential equation theory 
and dynamical systems.

In summary, the Liénard Equation plays a key role in the 
understanding of non-linear, chaotic, and non-conservative 
systems in various scientifi c and engineering disciplines. Its 
study has led to the development of analytical and numerical 
tools that are fundamental for the understanding and design 
of complex and dynamic systems. Hence, research aimed at 
the qualitative study of Liénard-type system solutions has an 
impact not only from a theoretical point of view but also in 
applications.

On the other hand, the problem of continuability of 
solutions is of paramount importance in the study of qualitative 
properties. For example, in [8] some properties of the system

= ( ) ( ) ( ),
= ( ),

x y y F x
y g x

  





               (1)

was studied under suitable assumptions. A particular case 
of the above system is the well-known Liénard equation

( ) ( )=0,x f x x g x                 (2)

Where f(x), g(x) are continuous functions , :f g    and 
g(0) =0, are the subject of detailed studies by various authors 
due to many applications in a variety of domains in science 
and technology, see for example [9-16] and classical sources 
[17-19].

Let 
0

( )= ( )
x

F x f s ds  we obtain an equivalent system to 
equation (2):

= ( ),
= ( ),

x y F x
y g x

 





              (3)

Fractional calculus studies problems with derivatives and 
integrals of real or complex order. As a purely mathematical 
fi eld, the theory of fractional calculus was brought up for the 
fi rst time in the XVIIth century and since then many renowned 
scientists worked on this topic, among them Euler, Laplace, 
Fourier, Abel, Liouville, and Riemann (see [20]). Today there is a 

vast literature on this subject, and many works and researchers 
multiply day by day in the world showing the most varied 
applications. The most common applications are currently 
found in Rheology, Quantum Biology, Electrochemistry, 
Dispersion Theory, Diffusion, Transport Theory, Probability 
and Statistics, Potential Theory, Elasticity, Viscosity, Automatic 
Control Theory, .

After presenting the fractional integrals it is possible 
to defi ne the fractional derivatives associated with these 
operators. Fractional derivatives and fractional integrals are 
extensions of ordinary calculus, by considering derivatives 
of arbitrary real or complex order, and a general form for 
multiple integrals. Although mathematicians have wondered 
since the very beginning of calculus about these questions, 
only recently they have proven their usefulness and since then 
important results have appeared not only in mathematics but 
also in physics, applied engineering, biology, etc. One question 
that is important is what type of fractional operator should be 
considered since we have in hand several distinct defi nitions 
and the choice depends on the considered problem.

In the literature many different types of fractional 
operators have been proposed, here, we show that various 
of that different notions of derivatives, can be considered 
particular cases of our defi nition and, even more relevant, that 
it is possible to establish a direct relationship between global 
(classical) and local derivatives, the latter not very accepted 
by the mathematical community, under two arguments: their 
local character and compliance with the Leibniz Rule. To 
facilitate the understanding of the scope of our defi nition, we 
present the best-known defi nitions of integral operators and 
their corresponding differential operators (for more details 
you can consult [21]). Without many diffi culties, we can extend 
these defi nitions, for any higher order.

A ge neral integral operator

In [22] was presented an integral operator generalized, 
which contains in particular cases, many of the well-known 
integral operators, both integer order and not. First, we will 
present the defi nition of the generalized derivative, see [23] 
(see also [24] and [25]) which was defi ned in the following way.

Defi nition 1: Given a function :[0, )f   . Then the 
N-derivative of f of order  is defi ned by

0

( ( , )) ( )( )= limF

f t F t f tN f t



 


              (4)

for all t>0, (0,1) being F(,t) is some function. If f is  - 

differentiable in some (0, ), and 
0

lim ( )F
t

N f t


 exists, then defi ne 

0
(0)= lim ( )F F

t
N f N f t 


, note that if f is differentiable, then 

( )= ( , ) ( )FN f t F t f t    where ( )f t  is the ordinary derivative. 

Some particular cases of this operator are the following:

I) F(x,)  1, in this case, we have the ordinary derivative.

II) ( , )= xF x e





. In this case we obtain, from Defi nition 1, 

the non-conformable derivative 1 ( )N f x  defi ned in [26] (see 
also [27]).
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III) F(x,) → e(1-)x, this kernel satisfi es that F(x,) → 1 as  → 
1, a conformable derivative used in [28].

IV) F(x,) → x1- with this kernel we have F(x,) → 0 as  → 1 
(see [29]), a conformable derivative.

V) F(x,) → x with this kernel we have F(x,) → x as  → 1 (see 
30]). It is clear that since it is a non-conformable derivative, 
the results will differ from those obtained previously, which 
enhances the study of these cases.

VI) F(x,) → x- with this kernel we have F(x,) → x-1 as  → 1 
This is the derivative 3N

 studied in [31]. As in the previous case, 
the results obtained have not been reported in the literature.

Now, we give the defi nition of a general fractional integral. 
Throughout the work, we will consider that the integral 
operator kernel T defi ned below is an absolutely continuous 
function.

Defi nition 2: Let I be an interval , ,   I a t I and     . The 
integral operator ,T aJ

, is defi ned for every locally integrable function 
f on I as

 ,

( )( )( )= .
,

b

T a a

f tJ f b dt
T t



                (5)

Remark 3: It is easy to see that the case of the TJ  operator 
defi ned above contains, as particular cases, the integral operators 
obtained from conformable and non-conformable local derivatives, 
Interested readers can consult [22]. 

The following results are generalizations of the known 
results of the integer order Calculus.

Proposition 4: Let I be an interval , ,  0 < 1I a I      and f 
a  -diff erentiable function on I such that f   is a locally integrable 
function on I. Then, we have for all xI 

, ( ( ))( )= ( ) ( ).T a TJ N f x f x f a 
 

Proposition 5: Let I be an interval ,   (0,1]I a I and     . 

,( ( ))( )= ( ),T T aN J f x f x 


for every continuous function f on I and a,tI. 

In [29] it is defi ned the integral operator ,F aJ  for the choice 

of the function F given by 1( , )=F x x   , and [29, Theorem 3.1] 
shows

1 ,
( )( )= ( ),

x a
N J f x f x 



for every continuous function f on I, a, xI and (0,1]. 
Hence, Proposition 5 extends to any T of this important equality.

Theorem 6: Let I be an interval , ,   I a b I and      . Suppose 
that f,g are locally integrable functions on I, and 1 2,k k  . Then we 
have

(1)  , 1 2 1 , 2 ,( )( )= ( ) ( ),T a T a T aJ k f k g x k J f x k J g x   

(2)  if f g , then , ,( ) ( )T a T aJ f x J g x   for every tI with t≥a,

(3)  , ,( ) ( )T a T aJ f x J f x   for every tI with t≥a,

(4)  , , ,

( ) = ( ) ( )= ( )( )
( , )

b

T a T b T aa

f s ds J f x J f x J f x b
T s

  


  for every tI. 

Let 1[ , ]C a b  be the set of functions f with fi rst ordinary 
derivative continuous on [a,b], we consider the following 
norms on 1[ , ]C a b :

1
[ , ] [ , ] [ , ]

= ( ) , = ( ) ( )max max maxC Ca b a b a b
F f x F f x f x  

 

Theorem 7: The fractional derivatives , ,( )  ( )T a T bN f x and N f x 
   

are bounded operators from 1[ , ]  [ , ]C a b to C a b  with

1, ( ) ,T a C C
N f x K F f

                 (6)

1, ( ) ,T b C C
N f x K F f

                   (7)

where the constant K, may be dependent on the derivative 
frame considered. 

Remark 8: From previous results we obtain that the derivatives 

, , ( )  ( )T a T bN f x and N f x 
 

 are well defi ned. 

Theorem 9: (Integration by parts) Let , :[ , ]f g a b   
diff erentiable functions and (0,1]. Then, the following property 
hold

, , , ,(( )( ( )))= ( ) ( ) (( )( ( ))).
b

T a T a T a T aa
J f N g x f x g x J g N f x   

               (8)

 In [32] the following system was studied:

= ( , )
,

= ( ) ( )
T

T

N x E x y
N y p y g x








 
               (9)

where ( , ) = ( , ) ( , ) with ( , ) = ( ( ) ( ) ( ))E x y a x y H x y H x y H y y F x   
while the functions in above system are continuous real 
functions in their arguments.

Throughout this paper we will use the following notations 
(F(x) as above and Ea,p is the bipárametric Mittag-Leffl er 
function):

, ,0 0

(0, ) ( ( ))( )= ( ) , ( )= (0, )= .
( )

x y

a p a p

a s H sG x g s ds E y E y ds
p s

  
 

Our objective is to illustrate that in the system (9), under 
different local operators, the examples and counterexamples 
known from the literature continue to hold. Obviously, our 
conclusions cover the systems (1) and (3), and therefore, for 
the equation (2).

Results

The following results are useful in the su bsequence ([32]).

Theorem 10: Under the following assumptions:

i) E(x,y) is a differentiable function with 

2
sup ( , )<

R

E x y
x





 and

,lim sup ( )= .a p
y

E y



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ii) p(y)>0 for all y .

iii) There exists a positive constant  such that ( ) ( )g x F x  

, 
0

( ) ( ( ))
t
x s g x s ds    for all x  and ( ) <

x R

F x


 .

iv) 1,0 2( )a C   such that ( , )>0a x y  for all x and y, and 

lim sup ( , )<
x

a x y


  for all y.

then all solutions of system (9) can be defi ned for all t. 

Theorem 11: In addition to i) and iv) suppose that the following 
assumptions are satisfi ed:

ii*) ( )>0p y  for all y , ( )=P   ,with 
0

( )=
( )

y dsP y
p s  

and sup ( )=
x

Lim G x


  ,

iii*) there exists a positive constant >0 such that 

( ) ( )>g x F x   for all x  and , ( )a pE y    for all y .

Then all solutions of (9) exist in the future. 

Remark 12: The above results allow us to obtain new conditions 
for the boundedness of the solutions of (1) and (2). Thus, for example, 
for the system (1) the following result is easily obtained from 
Theorem 10:

Theorem 13: Under the following assumptions:

i) ( )>'F x   and lim ( )= .
y

y




sup ( ) < .
x

F x





then all solutions of system (1) can be defi ned for all t. 

The Theorem 13 extends those obtained in [8] and [14]. 

Remark 14: When a(x,y)  1 and   1, our results agree with the 
Theorems 2.1 and 2.2 obtained in [33]. 

Remark 15: Our results are consistent with those reported in the 
literature for the Liénard equation, particularly with those obtained 
in [9-16]. 

Some numerical disquisitions

Taking into account Defi nition 1, we consider  the 
generalized Liénard type system of (9). We must point out 
that the two-dimensional systems presented below are 
studied under classical ordinary operators. The interesting 
thing about our study is that they are considered under new 
local generalized differential operators, both conformable and 
non-conformable. All this is possible, given the generality and 
breadth of the operator of Defi nition 1, since it allows "varying" 
both the kernel itself and the order of the considered operator. 
The classical case (obtained when F  1) is added as a reference 
for the reader and that supports our conclusions.

We can also point out two additional details. First, given the 
intention of showing different variations of the system (9), we 
have consulted various sources dating back 30 years, they are 
results established as starting points for various subsequent 
investigations, and second, we could consider two large 

classes of systems presented, those that satisfy the Theorems 
indicated above and those that do not satisfy some of the stated 
considerations and the reason is the following: both classes are 
"good" in the following sense: they are asymptotically stable or 
unstable. This allows us to affi rm that both behaviors continue 
to be maintained in the generalized case.

Case I

The conditions of Theorem 13 are satisfi ed ([34,35]) 
(Figures 1,2).

 3= ,

= ,
T

T

N x y x x

N y x





  



             (10)

Case II

The conditions of Theorem 13 hold, with =1 (adapted from 
[36]) (Figures 3,4).

3

2 2

= ,
3

( 4)= 1 ,
16

T

T

xN x y x

x xN y x





  
   

  


      

                (11)

Case III

The function F does not satisfy the conditions of Theorem 
13 so there are solutions that cannot be extended to the future 
(see [37,38]) (Figures 5,6).

2

3

3= ,
2

= ,

T

T

xN x y x

N y x





  
   

  
 

                 (12)

Figure 1: Numerical solutions of the Liénard system of Case I for (a) classical, 
(b) conformable with  (1 )( , )=F t t , and (c) conformable with  (1 )( , )= tF t e  
derivatives. Red thin curves in panels (b) and (c) are solutions for the orders α = 
0.975,0.925,0.9. The classical derivative solution is also included in panels (b) and 
(c) as a reference (black dotted curve). The blue dot indicates the initial condition.

Figure 2: Numerical solutions of the Liénard system of Case I for (a) classical, (b) 
non-conformable with 





( , )= tF t e , and (c) non-conformable with ( , )=F t t  

derivatives. Red thin curves in panels (b) and (c) are solutions for the ordersα = 
0.975,0.925,0.9. The classical derivative solution is also included in panels (b) and 
(c) as a reference (black dotted curve). The blue dot indicates the initial condition.



191

https://www.peertechzpublications.org/journals/annals-of-mathematics-and-physics

Citation: Nápoles Valdés JE, Roa PM (2023) Numerical simulations in a generalized Liénard's type system. Ann Math Phys 6(2): 187-195. 
DOI: https://dx.doi.org/10.17352/amp.000101

Case IV

In this case, there is no >0 such that ( ) ( )g x F x   . As in 
the previous case, there are solutions that cannot be extended 
([39]).

2

3

= 2 ,
= ,

T

T

N x y x
N y x





 



               (13)

Remark: The same graph did not appear. We have the 
following for the common case, with time steps dt = 0.001 and 
total time t = 0.3:

Some variations were obtained without square root and 
F(x)=-x2 and g(x)=-x3, with step dt0.01 and total time t = 3:

We also "approximate" the value of the root by considering 
2( )= ( )(0.99 2)F x x  and g(x)=-x3, with step dt = 0.001 and total 

time t = 8, obtaining:

Case V

In ([40]), the following system with a limit cycle was 
studied (Figures 7,8).

3

= ( 1)( 1.1),
= ,

T

T

N x y x x x
N y x





   



              (14)

Case VI

The following lineal case can be studied as the limiting case 
of the equation 2, with F = 1 and g(x)=x. That is, it satisfi es all 
the conditions of the Theorem 13 (Figures 9,10).

= ,
= ,

T

T

N x y x
N y x





 



              (15)

Variations

Below we present a group of known results from the 
literature, which il lustrate the previous conclusions. It is not 

Figure 3: Numerical solutions of the Liénard system of Case II for (a) classical, 
(b) conformable with  (1 )( , )=F t t , and (c) conformable with  (1 )( , )= tF t e  
derivatives. Red thin curves in panels (b) and (c) are solutions for the ordersα = 
0.975,0.925,0.9. The classical derivative solution is also included in panels (b) and 
(c) as a reference (black dotted curve). The blue dot indicates the initial condition.

Figure 4: Numerical solutions of the Liénard system of Case II for (a) classical, (b) 
non-conformable with 




( )
( , )= tF t e , and (c) non-conformable with ( , )=F t t  

derivatives. Red thin curves in panels (b) and (c) are solutions for the ordersα = 
0.975,0.925,0.9. The classical derivative solution is also included in panels (b) and 
(c) as a reference (black dotted curve). The blue dot indicates the initial condition.

Figure 6: Numerical solutions of the Liénard system of Case III for (a) classical, 
(b) non-conformable with 





( , )= tF t e , and (c) non-conformable with ( , )=F t t  

derivatives. Red thin curves in panels (b) and (c) are solutions for the ordersα = 
0.975,0.925,0.9. The classical derivative solution is also included in panels (b) and 
(c) as a reference (black dotted curve). The blue dot indicates the initial condition.

Figure 5: Numerical solutions of the Liénard system of Case III for (a) classical, 
(b) conformable with  (1 )( , )=F t t , and (c) conformable with  (1 )( , )= tF t e  
derivatives. Red thin curves in panels (b) and (c) are solutions for the ordersα = 
0.975,0.925,0.9. The classical derivative solution is also included in panels (b) and 
(c) as a reference (black dotted curve). The blue dot indicates the initial condition.

Figure 7: Numerical solutions of the Liénard system of Case V for (a) classical, 
(b) conformable with  (1 )( , )=F t t , and (c) conformable with  (1 )( , )= tF t e  
derivatives. Red thin curves in panels (b) and (c) are solutions for the orders. α = 
0.975,0.925,0.9. The classical derivative solution is also included in panels (b) and 
(c) as a reference (black dotted curve). The blue dot indicates the initial condition.

Figure 8: Numerical solutions of the Liénard system of Case V for (a) classical, (b) 
non-conformable with 




( )
( , )= tF t e , and (c) non-conformable with ( , )=F t t  

derivatives. Red thin curves in panels (b) and (c) are solutions for the ordersα = 
0.975,0.925,0.9. The classical derivative solution is also included in panels (b) and 
(c) as a reference (black dotted curve). The blue dot indicates the initial condition.
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diffi cult to verify that if the conditions of Theorem 13 are 
satisfi ed, all solutions can be extended to the future and if those 
related to the function F are not met, there are unbounded 
solutions in fi nite time (Figures 11,12).

Example 16 [41]

3

3

= ,
3

= ,

T

T

xN x y x

N y x





  
   

  
 

                (16)

Example 17 [42]

 2= 3 2.2 ,

= ,

T

T

N x my mx msin x

N y x





   

 

             (17)

>0m  

Observations: Both the value of m  and t  make the curves 
grow very quickly. So much so that the values m = 0.05 and 
1<t<5 were considered (Figures 13,14).

Example 18 [42]

 2= ,
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T

T

N x my k mx l msin x

N y x




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
              (18)

 >0m , > 2
2
lk   

In the following fi gures 18 was graphed with the values m = 
2, k = 9/20, I = 6 (Figures 15,16)

Example 19 [43]

5= ( )( 3),
2

= ,

T

T

N x y k x x

N y x






  


                (19)

9 7= ,
20 25

k  

18 was graphed with the values k = 9/20 (Figures 17,18)

18 was graphed with the values k = 7/25 (Figures 19,20)

Figure 9: Numerical solutions of the Liénard system of Case VI for (a) classical, 
(b) conformable with  (1 )( , )=F t t , and (c) conformable with 


(1 )

( , )= tF t e  
derivatives. Red thin curves in panels (b) and (c) are solutions for the ordersα = 
0.975,0.925,0.9. The classical derivative solution is also included in panels (b) and 
(c) as a reference (black dotted curve). The blue dot indicates the initial condition.

Figure 10: Numerical solutions of the Liénard system of Case VI for (a) classical, 
(b) non-conformable with 





( , )= tF t e , and (c) non-conformable with ( , )=F t t  

derivatives. Red thin curves in panels (b) and (c) are solutions for the orders α = 
0.975,0.925,0.9. The classical derivative solution is also included in panels (b) and 
(c) as a reference (black dotted curve). The blue dot indicates the initial condition.

Figure 11: Numerical solutions of the Liénard system of Example 17 for (a) classical, 
(b) conformable with  (1 )( , )=F t t , and (c) conformable with  (1 )( , )= tF t e  
derivatives. Red thin curves in panels (b) and (c) are solutions for the orders α = 
0.975,0.925,0.9. The classical derivative solution is also included in panels (b) and 
(c) as a reference (black dotted curve). The blue dot indicates the initial condition.

Figure 12: Numerical solutions of the Liénard system of Example 17 for (a) classical, 
(b) non-conformable with 





( , )= tF t e , and (c) non-conformable with ( , )=F t t  

derivatives. Red thin curves in panels (b) and (c) are solutions for the orders α = 
0.975,0.925,0.9. The classical derivative solution is also included in panels (b) and 
(c) as a reference (black dotted curve). The blue dot indicates the initial condition.

Figure 13: Numerical solutions of the Liénard system of Example 18 for (a) classical, 
(b) conformable with  (1 )( , )=F t t , and (c) conformable with  (1 )( , )= tF t e  
derivatives. Red thin curves in panels (b) and (c) are solutions for the orders α = 
0.975,0.925,0.9. The classical derivative solution is also included in panels (b) and 
(c) as a reference (black dotted curve). The blue dot indicates the initial condition.

Figure 14: Numerical solutions of the Liénard system of Example 18 for (a) classical, 
(b) non-conformable with 





( , )= tF t e , and (c) non-conformable with ( , )=F t t  

derivatives. Red thin curves in panels (b) and (c) are solutions for the orders α = 
0.975,0.925,0.9. The classical derivative solution is also included in panels (b) and 
(c) as a reference (black dotted curve). The blue dot indicates the initial condition.
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Example 20 [43] (Figures 21,22)

= 3 ( 1)( 3),
= ,

T

T

N x y x x x
N y x





   



              (20)

Example 21 [43]

7 5 3 264 112 196 36= ,
35 5 3 2

= ,

T

T

CN x y x x x x x

N y x






   

  
      

  
 

       (21)

C =47,  ≥ 2.86896 and  ≥ 0.862

Observations: 1) For all the following cases (ordinary, 
conformable, and non-conformable)  = 4.5 was considered.

2) For the common curve (black dotted line) steps of dt = 
0.001 and a fi nal time of tf = 0.5 were considered.

3) For the second conformable case in (c) with (1 )( , )= tF t e  

, even with small steps and maximum execution time of 

the program (it was considered dt = 0.00001 and tf = 0.001, 
respectively) it was observed that the values of y were 
increasingly negative (the value y = -75 was reached for x =). 
Therefore, it can be assumed that they did not achieve the same 
behavior as in case (b). In fact, for these same values, it can be 
observed that with parameter =0.9 the curve is ̀ `faster" (green 

Figure 15: Numerical solutions of the Liénard system of Example 19 for (a) classical, 
(b) conformable with  (1 )( , )=F t t , and (c) conformable with  (1 )( , )= tF t e  
derivatives. Red thin curves in panels (b) and (c) are solutions for the orders α = 
0.975,0.925,0.9. The classical derivative solution is also included in panels (b) and 
(c) as a reference (black dotted curve). The blue dot indicates the initial condition.

Figure 16: Numerical solutions of the Liénard system of Example 19 for (a) 
classical, (b) non-conformable with 




( )
( , )= tF t e , and (c) non-conformable with 

( , )=F t t  derivatives. Red thin curves in panels (b) and (c) are solutions for the 
orders α = 0.975,0.925,0.9. The classical derivative solution is also included in 
panels (b) and (c) as a reference (black dotted curve). The blue dot indicates the 
initial condition.

Figure 17: Numerical solutions of the Liénard system of Example 20 for (a) classical, 
(b) conformable with  (1 )( , )=F t t , and (c) conformable with  (1 )( , )= tF t e  
derivatives. Red thin curves in panels (b) and (c) are solutions for the orders α = 
0.975,0.925,0.9. The classical derivative solution is also included in panels (b) and 
(c) as a reference (black dotted curve). The blue dot indicates the initial condition.

Figure 18: Numerical solutions of the Liénard system of Example 20 for (a) 
classical, (b) non-conformable with 




( )
( , )= tF t e , and (c) non-conformable with 

( , )=F t t  derivatives. Red thin curves in panels (b) and (c) are solutions for the 
orders α = 0.975,0.925,0.9. The classical derivative solution is also included in 
panels (b) and (c) as a reference (black dotted curve). The blue dot indicates the 
initial condition.

Figure 19: Numerical solutions of the Liénard system of Example 20 for (a) classical, 
(b) conformable with  (1 )( , )=F t t , and (c) conformable with 




(1 )
( , )= tF t e  

derivatives. Red thin curves in panels (b) and (c) are solutions for the orders α = 
0.975,0.925,0.9. The classical derivative solution is also included in panels (b) and 
(c) as a reference (black dotted curve). The blue dot indicates the initial condition.

Figure 20: Numerical solutions of the Liénard system of Example 20 for (a) 
classical, (b) non-conformable with 




( )
( , )= tF t e , and (c) non-conformable with 

( , )=F t t  derivatives. Red thin curves in panels (b) and (c) are solutions for the 
orders α = 0.975,0.925,0.9. The classical derivative solution is also included in 
panels (b) and (c) as a reference (black dotted curve). The blue dot indicates the 
initial condition.

Figure 21: Numerical solutions of the Liénard system of Example 21 for (a) classical, 
(b) conformable with  (1 )( , )=F t t , and (c) conformable with  (1 )( , )= tF t e  
derivatives. Red thin curves in panels (b) and (c) are solutions for the orders α = 
0.975,0.925,0.9. The classical derivative solution is also included in panels (b) and 
(c) as a reference (black dotted curve). The blue dot indicates the initial condition.
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curve), than with =0.925 (blue curve) and with =0.975 (red 
curve). For the following graphs, it was decided to maintain 
the step values dt = 0.00001 and maximum execution time tf = 
0.0001 for the red, blue, and green curves. 

4) For the conformable case in (b) with 
(1 )( , )=F t t  

 it was 
enough to consider steps of dt = 0.001 and a fi nal time of tf = 0.5 
to see the graphs below.

5) For the non-conformable case in (b) with ( , )= tF t e





 the 
steps of dt = 0.001 and a fi nal time of tf = 0.55 and in (c) with 

( , )=F t t  the steps of dt = 0.001 and a fi nal time of tf = 0.2 
(Figures 23,24) .

In addition to (Figures 19, 25,26)[15]

 2= ,

= ,

T

T

N x my k mx l x msin x

N y x





   

              (22)

>0m , > 2
2
lk 

Conclusion

In this work, we have presented a set of examples, known 
from the literature, in which the  following conclusion can 
be seen: The study of the equilibrium points of the ordinary 
system provides clues to the behavior of the system under 
other differential operators. What does this mean for an applied 
researcher or an area related to the physical sciences? It means 
that the study of a generalized model must be accompanied by 
the qualitative study of the corresponding ordinary system. In 
fact, the previous analysis of the corresponding ordinary system 
can considerably help the understanding of the simulation of a 
system under generalized differential operators.
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