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Abstract

In this paper we establish a unique factorization theorem for pure quantum states expressed in computational basis. We show that there always exists unique 
factorization for any given N-qubit pure quantum state in terms of the tensor product of non-factorable or ``prime'' pure quantum states. This result is based on a simple 
criterion: Given N-qubit pure quantum state in computational basis can be factorized as the tensor product of an m-qubit pure quantum state and an n-qubit pure quantum 
state, where (m + n) = N, if and only if the rank of the certain associated matrix is equal to one. This simple criterion leads to a factorization algorithm which when applied to 
an N-qubit pure quantum state factorizes that state into the tensor product of non-factorable or ``prime'' pure quantum states. This paper shows that for any given N-qubit 
pure quantum state the said factorization always ``exists'' and is ``unique''. We demonstrated our work here on a computational basis.
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Introduction

A well-known unique factorization that plays a crucial 
role in number theory is the unique factorization of natural 
numbers in terms of the product of its prime factors [1]. This 
is the well-known Fundamental Theorem of Arithmetic. There 
are also other Fundamental Theorems, e.g. the Fundamental 
Theorem of Calculus, the Fundamental Theorem of Algebra, 
the Fundamental Theorem of Linear Algebra, etc. These 
fundamental theorems have far-reaching implications and 
have played a signifi cant role in shaping the respective 
branches of mathematics to which they belong. Fundamental 
theorems are useful tools to solve complex problems.

One more unique factorization is the one that we will develop 
in this paper. This unique factorization is related to quantum 
information theory. This is about fi nding unique factorization 
of an N-qubit pure quantum state in terms of the tensor 
product of non-factorable or ̀ `prime'' pure quantum states. We 

work here on a computational basis. This unique factorization 
is useful to decide the entanglement status of multi-qubit pure 
quantum states. One more important application of this unique 
factorization is in the process of synthesizing a multi-qubit 
pure quantum state in the laboratory with exponential speedup 
when the unique factorization obtained for a given multi-qubit 
pure quantum state has large many factors [2].

Entanglement present in a quantum state is one of the main 
distinguishing features that separates quantum mechanics 
from classical mechanics. Schrodinger described it as follows: ̀ `I 
would not call [entanglement] one but rather the characteristic 
trait of quantum mechanics, the one that enforces its entire 
departure from classical lines of thought'' [3]. Entanglement 
is a resource of great utility in quantum computation and 
quantum information and its characterization is an important 
problem [4-7]. Determining whether a given multi-qubit 
pure quantum state is separable or entangled is one of the 
important problems in quantum information theory [8-10] 
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and this problem was successfully tackled using factorization 
algorithms in [11,12]. Entanglement describes a correlation 
between different parts of a quantum system that exceeds 
anything that is possible classically. This leads to many highly 
counterintuitive phenomena [13-18]. Quantum entanglement 
is a counterintuitive, strange, and challenging topic of research 
and many remarkable achievements have been made through 
its extensive study [19-50].

A factorization algorithm based on checking the rank of 
certain associated matrices was developed in [11]. The algorithm 
developed in [11] for factorization of an arbitrary N-qubit pure 
quantum state into non-factorable or ``prime'' factors was 
developed using the following Simple Criterion: For a given 
N-qubit pure quantum state there exist two pure quantum 
states, namely, an m-qubit pure state made up from fi rst m 
qubits and an n-qubit pure state made up from next n qubits, 
where m + n = N, as factors of given N-qubit pure quantum state 
if and only if the rank of the corresponding associated matrix 
of size 2m × 2n obtained from given N-qubit pure quantum state 
should be of rank equal to one.

Therefore, as per that criterion, it is enough to check 
whether the value of the rank of a certain associated matrix 
is equal to one or not in order to check the existence or non-
existence of certain factorization.

An alternative factorization algorithm proposed in [12] for 
factorization of an arbitrary N-qubit pure quantum state into 
non-factorable or ``prime'' factor states was developed using 
the Schmidt decomposition technique. It was shown in [12] that 
a factorization of an N-qubit state in terms the tensor product 
of an m-qubit state and an n -qubit state, where N = m + n, exists 
when the value of Schmidt rank of certain bipartite state is equal 
to one, where this bipartite state is constructed from the given 
N-qubit state by expressing the m-qubit state made up from 
fi rst m qubits as an m-dimensional vector and the n -qubit 
state made up from next n qubits as an n-dimensional vector. 
Thus in [12] the given N-qubit state is needed to be expressed 
as a bipartite state, with the fi rst part an m dimensional vector 
and the second part an n dimensional vector, and the Schmidt 
decomposition of the thus formed bipartite state is then needed 
to be carried out and the corresponding Schmidt rank is then 
needed to be determined and the desired factorization will exist 
if and only if the value of the Schmidt rank will be equal to one.

The aim of the present paper is to prove that the said 
``factorization'' in terms of non-factorable or ``prime'' factors 
always ̀ `exists'' and is ̀ `unique'', and can be obtained using the 
factorization algorithm developed in [11](or [12]). To establish 
the unique factorization we follow here the criterion and the 
factorization algorithm developed in [11] due to its simplicity.

Factorization algorithm

Let us now state in brief the criterion given in [11] for the 
existence of factorization and the steps of the factorization 
algorithm that follows from it for the sake of completeness.

Notation: Let |   be an N-qubit pure state : 

2

=1

| = |
N

r sss

a r                   (1)

expressed in terms of the computational basis. Here the 

basis vectors | sr   are ordered lexicographically. That is, the 

corresponding binary sequences are ordered lexicographically: 

1 =00 00,r   2 =00 01,r   ,  
2

= 11 11,Nr   so that 1| =|00 00 ,r    

2| =|00 01 ,r    ,  2
=|11 11 .Nr 

Let m, n be any integers such that 1 ≤ m, n < N and m + n = N 
Let the corresponding two sets of computational basis vectors 

ordered lexicographically be 1 2
| , ,| mi i   (each of length m ) 

and 1 2
| , ,| nj j   (each of length n). Rewrite |   thus : 

2 2

=1 =1

| = | | .
m n

i j u vu vu v

a i j                    (2)

Here in the symbol, aiujv the suffi x iujv is the juxtaposition 

of the binary sequences iu and jv in that order. Thus we get a 

2m × 2n matrix =[ ]i ju v
A a  which will be called the 2m × 2n matrix 

associated to | .   

Criterion ([11]): The state |   given by (1) can be factored 

as the tensor product, 1 2| | ,    of an m-qubit state 1|   

and an n-qubit state 2|   if and only if the 2m × 2n matrix A 

associated with |   is of rank 1. 

A brief description of Factorization Algorithm:

Step 1: The factorization algorithm checks whether the 

given pure state |   given by (1) can be factored as the tensor 

product, 1 2| | ,    of a 1-qubit state 1|   and an (N - 1)-qubit 

state 2|   by checking whether the 21 × 2(N - 1) matrix A  

associated to |   is of rank 1 and when the given state |   has 

a linear (1-qubit) factor on the left and an (N - 1)-qubit factor 
on the right as per the above criterion.

Step 2: If yes, then one goes back to step 1, this time with 

2| =| .  

Step 3: If no, then one proceeds to check whether the 
given pure state |   given by (1) can be factored as the tensor 

product, 1 2| | ,    of a 2-qubit factor on the left and an (N - 

2)-qubit factor on the right by checking whether the 22 × 2(N - 2) 

matrix A associated to |   is of rank 1 and when so the given 
state |   has a quadratic (2-qubit) factor on the left and an (N 
- 2)-qubit factor on the right as per the above criterion.

Step 4: If yes, then one goes back to step 1, this time with 

2| =| .  

Step 5: If no, then one proceeds to check whether the given 

pure state |   given by (1) can be factored as the tensor product, 

1 2| | ,    of a 3-qubit factor on the left and an (N - 3)-qubit 
factor on the right by checking whether the 23 × 2(N - 3) matrix  A 
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associated to |   is of rank 1 and when so the given state |   

has a cubic (3-qubit) factor on the left and an (N - 3)-qubit 
factor on the right as per the above criterion, and so on.

Thus, as above the algorithm continues until the 
factorization of |   is completely done.

We now proceed to settle the main aim of this paper, namely 
to show that such complete factorization of |   ̀ `exists'' and it 
is ``unique''.

Existence and uniqueness of the factorizati on

We now proceed to discuss the main result of this paper. 
We will show here that the factorization for every N-qubit 
normalized pure quantum state expressed in computational 
basis ``exists'' and is ``unique'', in terms of the tensor product 
of non-factorable or ``prime'' pure quantum states.

Let |   be an N-qubit normalized pure quantum state 
expressed in the computational basis.

Defi nition 3.1: An N-qubit pure quantum state expressed 
in the computational basis, | ,   is called a non-factorable or 
``prime'' state if there do not exist any integers m, n satisfying 1 
≤ m, n < N and m + n = N such that m, n satisfy the criterion given 
in section II above, namely, the associated matrix of size 2m × 2n 
obtained from |   has rank equal to one.

Theorem 3.1 (Unique Factorization Theorem): There 
exists factorization for every N-qubit pure quantum state, 
| (||| ||=1),    expressed in computational basis in terms of 
the tensor product of non-factorable (prime) pure quantum 
states and this factorization is unique (up to normalization).

Proof: We fi rst establish the existence of the factorization. 
It is to be seen that every N-qubit pure quantum state is either 
(i) a non-factorable or ``prime'' state or (ii) it can be expressed 
as a tensor product of some non-factorable or ``prime'' pure 
states containing less than N-qubits such that the sum of the 
number of qubits present in each of these non-factorable or 
``prime'' pure states will be equal to N.

We proceed by induction on N, the number of qubits. For 
N = 1 we have a 1-qubit pure quantum state and it is clearly 
a non-factorable or ``prime'' pure state, therefore the result 
holds for N = 1.

We assume by strong induction that the claim is true for all 
pure quantum states containing less than N qubits.

Now, let |   be an N-qubit pure quantum state expressed in 

the computational basis. If |   is a non-factorable or ``prime'' 

state then there is nothing more to prove. Otherwise, there will 
exist some m, n where 1 ≤ m, n < N and m + n = N, such that 

1 2| =| |                    (3)

where 1|   is an m-qubit pure state made up from fi rst m 

qubits and 2|   is an n-qubit pure state made up from next n 
qubits.

Now, we will have a factorization by induction hypothesis, 

for the m-qubit state, 1|   and the n-qubit state, 2| ,   in 

terms of the tensor product of non-factorable or ``prime'' 
states | i   and | i   respectively as given below: 

1 1 2| =| | | p                       (4)

and 

2 1 2| =| | | q                      (5)

Therefore, we have got the desired factorization of the pure 
quantum state, | ,   under consideration in terms of the tensor 
product of non-factorable or ``prime'' pure quantum states, 
namely, 

1 2 1 2| =| | | | | |p q                               (6)

We now proceed to establish the uniqueness of such a 
factorization:

We proceed by induction on N, the number of qubits. For 
N = 1 we have 1-qubit pure quantum state and it is clearly a 
non-factorable or ``prime'' pure state, and so has unique 
factorization. Therefore the result holds for N = 1.

We assume by strong induction that the claim is true for all 
pure quantum states containing less than N qubits.

Now, let |   be an N-qubit pure quantum state expressed in 
the computational basis. If |   is a non-factorable or ``prime'' 
state then there is nothing more to prove. Otherwise, we apply 
the factorization algorithm described above step-by-step and 
determine the ``smallest'' m and corresponding n = N - m such 
that these m, n satisfy the criterion given in section II above, 
i.e. for these m, n the associated matrix of size 2m × 2n obtained 
from |   has rank equal to one, and therefore, the state |   
can be factored as the tensor product, 1 2| | ,    where 1|   
is an m-qubit state and 2|   an n-qubit state.

Now, it is easy to check that the m-qubit state 1|   is a 
non-factorable or ``prime'' pure state. Because suppose not, 
then there will exist r,s satisfying 1 ≤ r, s < m and r + s = m 
such that r,s satisfy the criterion given in section II above, i.e. 
the associated matrix of size 2r × 2s obtained from 1|   has 
rank equal to one, and therefore we will have 1| =| |      
where |  is an r-qubit state and |   an s-qubit state. Now, 
let 2| =| | .      Therefore, | =| |      where |  is an 
r-qubit state, r < m, and |  is an p = (s + n)-qubit state, p > 
n such that we now have r + p = N, i.e. for these r,p there exists 
the associated matrix of size 2r × 2p obtained from |   having 
rank equal to one, and this is contrary to the supposition made 
above that m is the ``smallest'' integer such that this m and the 
corresponding n = N - m satisfy the criterion given in section II 
above. Thus, 1|   is indeed a non-factorable or ``prime'' pure 
state as desired. Therefore, |   can be factored as the tensor 
product, 1 2| | ,    where 1|   is an m-qubit non-factorable 
or ``prime'' state and 2|   an n-qubit state.

Now, as seen above 2|   an n-qubit state where n < N. 
Therefore, by the induction hypothesis, we can express this 



152

https://www.peertechzpublications.org/journals/annals-of-mathematics-and-physics

Citation: Mehendale DP (2023) Unique factorization theorem for pure quantum states. Ann Math Phys 6(2): 149-153. DOI: https://dx.doi.org/10.17352/amp.000094

state ``uniquely'' as a tensor product of non-factorable or 
``prime'' pure states, | j   say, such that {1,2, , },j k   as given 
below: 

2 1 2| =| | | k                          (7)

Therefore, we will have ``unique'' factorization for the 
given N-qubit state |   as given below in terms of the tensor 
product of non-factorable or ``prime'' pure quantum states as 
given below: 

1 1 2| =| | | | k                         (8)

Hence the result. 

Conclusion

This paper has established a unique factorization theorem 
for pure quantum st ates. This theorem assures that there 
always exists unique factorization for any given N-qubit pure 
quantum state in terms of the tensor product of non-factorable 
or ``prime'' pure quantum states. One can determine the 
entanglement status of any given N-qubit pure quantum state 
by carrying out the unique factorization in terms of the tensor 
product of non-factorable or ``prime'' pure quantum states as 
assured by this unique factorization theorem. An N-qubit pure 
quantum state is separable when it can be expressed as a tensor 
product of N number of 1-qubit pure quantum states. Therefore, 
by applying the above-mentioned unique factorization 
theorem if the given N-qubit state becomes a tensor product 
of N number of 1-qubit states then and only then it will be a 
separable state, otherwise, it will be an entangled state having 
at least one (or more) entangled factor(s).
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