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Abstract

The exploration of population diversity motivated us to present this paper. A mathematical model for the ecological process of population dispersion is fi nally 
considered by us to fi gure out the dispersion of population along the area. The dispersal from one's home site to the next is considered the most important phenomenon in 
the demographic and evolutionary dynamics of the population. The most important factor regarding dispersal is the spatial distribution of individuals. This dispersal may 
result in enhanced clamping, huge randomness, or even more spacing. The Adomian Decomposition method has opted to work out the problem analytically. Numerical 
schemes brought an approximate solution by incorporating the Forward-in-Time and Central-In-Space (FTCS) scheme, the Crank Nicolson (CN) scheme, and Numerov’s 
method. The validity and effi  ciency of schemes employed for the proposed model are supported by core properties like stability, consistency, and convergence. A 
comparison is made between the results calculated via schemes and the one analytically. 
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Introduction

Molecular, cell, or organism populations are seldom evenly distributed over a featureless environment, with some interest in their 
motions, migrations, and redistributions at the level of the people’s movement may be the results of the special mechanochemical 
process from muscle macroscopic contractions or the streaming of amoeboids. At the level of the population, these various mechanisms 
may have less bearing on migration than on the degree of overcrowding and movement of the fl uid or air in which the organisms live. 
It is often appropriate to make a continuum assumption on the collective level that is, to depict discrete cells or organisms through 
continuous distributions of density. This leads to partial differential equations that are quite often analogous to traditional models 
for diffusions, convections, or attraction by molecules. Biological models involving Partial Differential Equations (PDEs) historically 
date back to the work of K. Pearson and the Blake man at the start of the 1900s. In 1930 there were others including R.A Fisher who 
applied PDEs for the spatial diffusions of genes and diseases. A signifi cant aspect of many living organisms is the capability to grow 
up in size while sustaining a scrupulous shape or geometry. This possession is common in advanced multicellular organisms where 
well-built intercellular communication bonds are present. It also happens in much more primal locales such as populations of 
microorganisms, although the underlying mechanisms might be rather different. Here we consider the nutrient-dependent growth 
of toadstool cells and conclude whether a colony can demonstrate time spread over space. Focusing on the growth of yeast under 
standard laboratory conditions, a distinctive experiment initiates with a Petri dish having a small volume of sterile nutrient-rich 
medium. Generally, the medium is a solidifi ed gel-like material called agar, which allows the liberated diffusion of tiny molecules 
and provides a convenient two-dimensional surface on which to grow micro-organisms. A little number of yeast cells is left on 
the agar surface. After absorption of nutrients from below, they grow and multiply to such an extent that the population gradually 
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enlarges and spreads over the surface of the substrate. In a number of cases, the shape of the colony remains essentially fi xed as it 
grows in size. Gray and Kirwan [1] established a model for the spread of yeast colonies which, with some modifi cations, will serve as 
our example. A colony of yeast usually takes the form of a shiny disk, visible to the naked eye that continually enlarges in diameter.

PDEs have several applications in fi elds like engineering, biology, chemistry, game theory, and many more. These are profi cient 
tools to frame the diverse problems mathematically emerging in different fi elds of study. Diffusion is a process through which matter 
is transferred from one part of the material to the other part. Diffusion equations can be used to model such a natural phenomenon in 
which there is a clear transference of particles or molecules from one place to the other. One such model was proposed by Skellem in 1951. 
He was the fi rst to show the population diversity of fl ora and fauna in the form of PDEs [2-8]. Such kinds of PDEs are solved analytically, 
and numerically using MATLAB. For the solution of the selected model, we use a well-known semi-analytical method known as the 
Adomian Decomposition method created by George Adomian (1970-1990) [2,3]. In the past several numerical methods are developed 
to solve PDEs, linear as well as nonlinear using implicit and explicit techniques [15-20]. In [33] authors present a robust (t, n) threshold 
version which is effi cient as well, for Schnorr’s signature scheme. In [34] authors construct and investigate the two-step scheme for the
Schrödinger equation [35]. Deals with the initial-boundary value problem for the 1D time dependent Schrödinger equation on the 
half-axis [36]. Deals with an initial-boundary value problem for a 2D time-dependent Schrödinger equation. In [37] numerical 
stability in reference to mathematical analysis is brought under discussion [38]. Provides rich information on computational fl uid 
dynamics covering several numerical techniques. Three fi nite difference implicit schemes are used in [39] which are unconditionally 
stable. In [40] authors evaluate bird populations in A doğan La es by statistical means of Poisson and negative binomial regression 
models.

One of the most broadly used techniques is FTCS. This technique is conditionally stable. This scheme can be used to solve PDEs 
numerically. Certain implicit schemes are effi ciently used, and such schemes are unconditionally stable. One such scheme is built 
by John Crank and Phyllis Nicolson. In this scheme for each time step, we have to use a system of equations for a linear problem. 
For nonlinear problems, the obtained system of equations is tridiagonal which can be solved fi rstly by TMA (Tridiagonal Matrix 
Algorithm). Instead of calculating the whole matrix, this method has the advantage of speedy calculations.

In the present work, we have provided a numerical investigation of the population dispersion model via several numerical 
techniques. These include FTCS (Forward in time and central in space) scheme, the Crank-Nicolson method, and Numerov’s method. 
The analysis of the applied schemes is also provided which includes stability, consistency, and accuracy. The solution’s uniqueness 
is discussed theoretically. The diffusion coeffi cient is discussed through plots in detail. Moreover, a comparison among the schemes 
is provided in the form of a table. The selected model is 

2

2
p p

D p
t x


 

 
 

                      (1)

This equation effi ciently presents the spread of populations over an area dynamically. Here p (x, t) denotes the population at 
some location x at time t,  is the rate of growth of the considered population and D is taken as the dispersion coeffi cient [4-8].

( , 0) ( )p x x                   (2) 

Where   (x) represents the Dirac Delta function.

The setting of the paper is as follows: In this section, we present the analytical solution of (1) using (2). In section 2 we present 
numerical techniques like FTCS, Crank Nicolson, and Numerov’s method. The characteristics like stability, consistency, and accuracy 
are discussed in the same section. In the following sections, we presented the results of employed schemes. 

To initiate our analysis, we fi rst rephrase (1) in an operator shape as

( ) ( )L p DL p pt xx                     (3)

Where differential operators are defi ned as under

2

2L and Lt x
t x

 
 
 

                  (4)

Integral  operators 1 1andL Lt x
   can take the form 

     1 1(.) . , . .
0

t
L dt L dxdxt x
                   (5)

It means that 



128

https://www.peertechzpublications.org/journals/annals-of-mathematics-and-physics

Citation: Abbas I, Ejaz A (2023) The behavior of population dispersion employing various numerical techniques. Ann Math Phys 6(2): 126-140. 
DOI: https://dx.doi.org/10.17352/amp.000092

     1 , , , 0L L p x t p x t p xt t
                  (6)

Apply 1Lt
 on both sides of (3) and use the initial condition

      1, ,p x t f x L L p x tt x
                  (7)

Now we fi nd u nknown functions P (x,t) as the sum of components and are defi ned by series like

   , ,
0

p x t p x tnn





                   (8)

After fi nding  components P0,P1,…. and setting the values in (7) leads to

       1, ,
0 0
p x t f x L L p x tn t x nn n

   
 

               (9)

    1... ...0 1 2 0 1p p p f x L L p pt x
                    (10)

Here

   0p x x

      1p x x D x t   

 
 

2
0 4, 1/2

2

xtp Dtp x t e
Dt









                (11)

Numerical methods

W e purport a fi nite domain  for the numerical computation of (1). We exhibit a rectangular mesh M to discretize the partial 
differential equation. Spatial coordinates are considered while time coordinates are presented vertically. Assume xi = a+(i-1h) where i 
= 1,2,3,…. and a is the left-hand boundary, tn = nk where n = 1,2,3,….. We represent the approximate and exact solution at each nodal 

point (xi,tn)  n np and Pi i  respectively. In many textbooks, the numeric solution of the population equation is discussed, for instance, 

Ames [9,10], 

Forward time-centere d space scheme

The fi nite difference method can be applied to obtain an approximate solution of (1). In all numerical solutions, the PDEs are 
converted into a discrete approximation. The discrete word in this context indicates that a numerical solution is known in the 
physical domain just at a fi nite number of points. The numerical method user can choose the number of those points. Generally, an 
increment in the number of nodes not only results in the increment of the resolution (i.e., detail), but it enhances the accuracy of 
the numerical computation. The discrete estimation provides a set of algebraic equations that are computed for unknown values. 
The mesh represents the set of positions where the discrete solution is calculated. These points are termed nodes, and if one were to 
sketch lines sandwiched between adjacent nodes in the domain, the consequential image would bear a resemblance to a net or mesh. 
Two key parameters of the net are ∆x the local adjacent distance between points in space and ∆t indicate the local distance between 
adjacent time steps. The straightforward examples considered in this item, ∆x and ∆t are regarded as uniform all the way through 
the mesh. The gist idea of the FD method is to replace continuous derivatives with so-called difference formulas that engage only 
the discrete values associated with positions on the mesh [11-15].

Consider 

np p i                 (12)

1n np pi ipt
t

 



                 (13)
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21 1
2

n n np p pii ipxx
x

  


 
 
 

                (14)

The su bstitution  of the above results (12-14) in the following 

1 21 1
2

n n nn n p p pp p nii i i iD p it x


     
 

 
 
 

21 1 1
2

n n np p pn n nii ip p D t tpi i i
x


       


 
 
 

                                        (15)

Where 1 2
D t

R
x





. After some  simplifi cation we get

   1 1 2 1 1 1 1
n n n np p R t R p pi i i i                     (16)

Stability, consistency and  accuracy

An FD scheme is considered stable if the computational error reduces as the calculation progressed from one marching step to 
the next step.

An FD scheme is called consistent if by decreasing the mesh and time step size, the truncation error tends to zero.

Stability of forward time-c entered space scheme: We want to study the condition for which the error can be identifi ed. Numerous 
techniques can be employed to discover the stability; here we use Vonn Neumann stability analysis. Let us assume 

ihn nkp e ei
                                 (17)

Where 1   , Consider 

   1 1 2 1 2 1 1 1
n n n np p R R R p pi i i i
                                               (18)

Substitution results in 

   1 2 1 2 1
h hke R R R e e                                   (19 )

After some simplifi cation we get

   1 2 2 cos1 2 1
ke R R R h                  (20)

For stability 1ke 

1 2 2 cos 11 2 1R R R h                  (21)

Solving  this leads us to 

4 1 2R R                   (22)

Consistency of forward time-centere d space scheme:

For consistency, we defi ne an operator as follows

2

2L D
t x


 

  
 

               (23)

Where 
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2

2
p p

L D pp
t x


 

  
 

               (24)

After some simplifi cation, we obtain

1 21 1
2

n n nn n p p pp pn ii i i iL p Dp pxxi t x


       
 

 
 
 

          (25)

2 2
2 2( ) ( )2 2

2

p p p
t t x

n t t xL D pi t x


  
   

    
 

 
 
 
 
 
 

           (26)

2
p ( ) 2

pn nL L ti i
t


   


              (27)

When , 0t x  

We get p 0n nL Li i 

So FTCS scheme i s consistent.

Accuracy of forward time-centered space sc heme:

To analyze the accuracy of the FTCS scheme for the population dynamics linear model, we apply the Taylor series term-wise by 
using equation (1) as follows

          , , , 2 , , ;1
2 3

...;
2 6

12 4 ...;
12

p x t k p x t R p x h t p x t p x h t k

k k
p kp p pt t tt ttt

p h p h ptt xx xxx

       

   

  









        (28)

Putting values in the above equation, obtained results are 

 

2 3 12 4... . .. k p;22 6 12

2
equation 0 ...

2

k k Dk
equation kp p p h p h pt tt ttt xx xxx

h

k
k k p ptt ttt

       

   

       
   


  
    

        (29)

2 2
p p ...

2 2 12

k k Dh
equation k ptt ttt xxx   

 
 
              (30)

This shows that the scheme is  1st order accurate in time and 2nd order in space.

Crank Nicolson Scheme

The FTCS and BTCS impl icit schemes produce truncation errors in time having O(∆t)2. For time-accurate solutions, the Crank-
Nicolson scheme has a considerable advantage [16]. In addition, the Crank-Nicolson scheme is not signifi cantly more diffi cult to put 
into operation than the BTCS scheme, and it has a temporal truncation error that is O(∆t)2. The Crank-Nicolson scheme is implicit, 
like BTCS, and it also possesses unconditional stability [17-22].



131

https://www.peertechzpublications.org/journals/annals-of-mathematics-and-physics

Citation: Abbas I, Ejaz A (2023) The behavior of population dispersion employing various numerical techniques. Ann Math Phys 6(2): 126-140. 
DOI: https://dx.doi.org/10.17352/amp.000092

Consider the following

1

1 1 12 21 1 1 1
2 22 2

1

2

n np pi ipt
t
n n n n n np p p p p pi i i ii ipxx

x x

n np pi ipi

 



         

 

 


   
       
 
 
 

Putting these values in equation (1)

 
   

   

1 1
1 1 12 21 1 1 12 22

1 1 11 2 2 11 2 1 1 1 1 1 1 1 2 1 1

n n n np p p pD n n n n n ni i i ip p p p p pi i i ii it x

n n n n n np F F F p F p F p p F F F pi i i ii i


              

              

 
 
 

 
   

1
1 1 1 12 21 1 1 12 22

n np pD tn n n n n n n n i ip p p p p p p p ti i i i i ii i
x


               



 
 
 

 

 
,1 22 22

D t t
F F

x

 
 


          

     1 1 1 1 12 21 1 1 1 1 2
n n n n n n n n n np p F p p p p p p F p pi i i i i i i ii i
                  

   1 1 1 12 21 1 1 2 1 1 1 1 1 2 1 1
n n n n n n n np p F p p F F F p F p p F F F pi i i i i ii i
                

 

   1 1 11 2 2 11 2 1 1 1 1 1 1 1 2 1 1
n n n n n np F F F p F p F p p F F F pi ii i i i
                        (31)

Which is the fi nal discretization? 

Stability of cr ank Nicolson Scheme:

For stability, w e consider (31)

   1 1 11 2 2 11 2 1 1 1 1 1 1 1 2 1 1
n n n n n np F F F p F p F p p F F F pi i i ii i
              

Where ,1 222( )

D t
F F t

x



  


  

Assume

ihn nkp e ei
                   (32)

( 1)1 n k ihnp e ei
                  (33)

( 1) ( 1)1
1

n k i hnp e ei
   

               (34)
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( 1) ( 1)1
1

n k i hnp e ei
   

               (35)

( ) ( 1)
1

n k i hnp e ei
  

                (36)

( ) ( 1)
1

n k i hnp e ei
  


               (37)

Where 1  

Taking into account (13) and after some simplifi cation, we fi nd that 

(2 1)1 1 2 1
( 2 1)1 1 2 1

h hF e F F F eke h hF e F F F e

 


 

   
     

             (38)

Obviously 1ke   

Hence Crank Nicolson scheme is unconditi onally stable.

Consistency of Crank Nicolson Scheme:

For consistency we consid er 

2
11 p;1 2

2 211 2 2
1 2 22

2 211 2 2 2 ;1 2 22

p pn np p t x x tii t x x t

p p p p p pn np p t x x t x tii t x x tx t

p p p p p pn np p t x x t x tii t x x tx t

                

                      

                      

   
  
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 

  
   
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        (39)

Defi ne the operator as 

   
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2

2
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Which leads to the consistency of the C rank-Nicolson scheme.

Accuracy of Crank Nicolson Scheme:

The Crank Nicolson Scheme applie d at equation (1) can be written as 

   1 1 1 1 12 2 ;1 1 1 12 2

D kn n n n n n n n n nu p p p p p p p p pi i i i i i i ii ihk
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After some simplifi cation 
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second terms vanished due to the model, so the required equation will be obtained as under
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It is clear that the scheme is accurate in order of  2 2,O h k .

Numerov’s method

The Crank-Nicolson scheme is an extensive development ov er the forward and backward schemes. On the other hand, it does 
not possess the highest order local accuracy that can be achieved. During such numerical investigation, Douglas initiated an implicit 
method to perk up accuracy with levelheaded computations. This technique permits just second-order derivatives for the elimination 
of the fourth-order difference. The scheme is unconditionally stable [23-29].

Let us assume 
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Putting values in equation (1)
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Which is fi nal discretization.

Uniqueness of solution and maximum principle

Consider,
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Theorem

Let T > 0 be fi xed. Suppose that a function P = P(x,t) is continuous in T an d  smooth in T, then we have the following 
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Proof: Suppose that - - 0p Dp p int xx T 

Let    max ,, p x tx t T
    and take  tV e p   . Now we have    , 0 ,V x t for x t T 

Hence it suffi ces to prove    , 0 ,V x t for x t T  . This imp lies that    , ,p x t for x t T  

Which is  the desired result.

To prove the results  , 0V x t  . Let V achieves its positive maximum value  ,0 0at x t T    thus we suppose that 

     , max , 00 0 ,V x t x tx t T     , so

   , 0 , 00 0 0 0V x t andV x tt xx 

Since V satisfi es 0V V DV V int xx T     , considering the inequality 0 0x x and t t   we get

 0 , 00 0V x t Dp Dt xx      , a contradiction, this leads to the required result.

(ii) can be proved in a similar like (i) using this -p instead of p. 

Results

Figure 1 shows the results produced by crank Nicolson. A comparison is also provided for t he detail ed analysis. The parameter 
 is taken as constant and parameter D is varied. It’s obvious from the plot that as soon as we increase the dispersion rate D, the 
area occupied by the population shows an upsurge which is quite a depiction of the physical phenomenon called dispersion. Figure 2 
shows the results produced by the same scheme as in Figure 1. Here the plots are drawn using D as constant and variation is taken in 
parameter . The increased values of  present an interesting phenomenon. As we enhance the values of alpha, the population starts 
increasing which is very easy to judge. Figure 3 shows the results produced by the FTCS scheme. Here dispersion rate is taken fi xed 
and  is increased uniformly. The results are quite obvious and cause a signifi cant increase in the population. Figure 4 is showing 

Figure 1: Refers the results extracted by FTCS scheme at α=1, h=0.5, k=0.01 and by analytical method varying dispersion coeffi  cient.
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Figure 2: Refers to the results extracted by FTCS scheme and analytical method at D=1, h=0.5, k=0.01 by varying growth rate.

Figure 3: Refers to the results extracted by the Crank Nicolson scheme and analytical method at α=1, h=1, k=0.01 by varying dispersion coeffi  cient.

Figure 4: Refers to the results extracted by the Crank Nicolson scheme and analytical method  D=1, h=1, k=0.01 by varying growth rate.

the comparison between analytical and FTCS schemes. The parameter D is changed keeping alpha fi xed. Figures 5,6 show the plots 
taken by Numerov’s method using the same technique as previously done.

Tables 1-3 display the results as obtained through simulations performed by employing numerical techniques such as Numerov’s 
method, FTCS and Crank Nicolson schemes respectively, A comparison between the analytical and approximated results is made by 



137

https://www.peertechzpublications.org/journals/annals-of-mathematics-and-physics

Citation: Abbas I, Ejaz A (2023) The behavior of population dispersion employing various numerical techniques. Ann Math Phys 6(2): 126-140. 
DOI: https://dx.doi.org/10.17352/amp.000092

Figure 5: Refers to the results extracted by Numerov’s method and analytical method at α=1, h=0.5, k=0.01 by varying dispersion coeffi  cient.

Figure 6: Refers to the results extracted by Numerov’s method and analytical method at D=1, h=0.5, k=0.01 by varying growth rates. 

Table 1: Estimation of the results at different locations with Numerov’s scheme.

Location Approximate Value Exact Value Error Relative Error

0.000 383.406573191 383.406573191 0.000000000 0.0000000000

1.000 300.834671517 298.597339436 2.237332082 0.0749280648

3.000 41.529584447 40.410755506 1.118828941 0.0276864148

5.000 0.791331562 0.740148805 0.051182757 0.0691519822

7.000 0.002077761 0.001834645 0.000243115 0.0132513374

9.000 0.000000748 0.000000615 0.000000132 0.0214634146

Table 2: Estimation of results at different locations with the FTCS scheme.

Location Approximate Value Exact Value Error Relative Error

0.000    766.8131 76608131 0.0000 0.0000

0.500 720.3543 724.4898 4.1355 0.0057

1.500 436.917 441.5044 4.5874 0.0103

2.500 160.7328 163.9981 3.2609 0.0198

3.500 35.8643 37.1485 1.2842 0.0345

6.500 0.0198 0.0224 0.0026 0.1160
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Figure 8: Displays the surface plot extracted by the analytic method by varying growth rate and fi xing dispersion coeffi  cient at D=1. 

calculating the relative error. The results show the effi ciency of the schemes. By comparing the results of numerical techniques, we 
found that the percentage error of the Crank-Nicolson scheme is less than the other two schemes. 

Discussion

While making the simulation we kept some parameters unchanged and the rest of those were allowe d to vary to show our 
obtained results graphically. For validation of their effi ciency, we gradually made a comparison with the analytical solution. Figures 
1,2 depicts the effi ciency of the FTCS scheme whereas Figures 3,4 give a comparison between the Crank Nicolson scheme and exact 
solution. Figures 5,6 indicate the results of Numerov’s method and comparison with the exact solution as well. Figures 7(a-d), 8(a-
d) are refl ecting the results of surface plots of the exact solution whereas in Figure 7 dispersion was allowed to vary and the growth 
rate was kept constant and in Figure 8 its reverse was applied [30-32].

Table 3: Estimation of the results at different locations with the Crank Nicolson scheme.

Location Approximate Value Exact  Value Error Relative Error

0.000  383.406573191 383.406573191 0.038700000 0.0000000

1.000 298.578517111 298.597339436 0.0237332082 0.0749280

3.000 40.4113295811 40.410755506 0.00118828941 0.0013686

5.000 0.740191331562 0.740148805 0.00051182757 0.00091519

7.000 0.0018077761 0.001834645 0.0000003115 0.00013251

9.000 0.000000748 0.000000615 0.000000132 0.00000463

Figure 7: Displays the surface plot extracted by the analytical method by varying the dispersion coeffi  cient and fi xing the growth rate at α=1.
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Conclusion

The linear model carrying the diffusion factor was adopted to analyze the population dispersion model in which the popula-
tion was initially stagnant at a single point. This model revolves around a wonderful combination of dispersion and growth rates. 
Schemes applied during simulation proved surprisingly effi cient. The numerical computation leads us to the result that when we 
fi nd the average error produced by the schemes applied, the average error of the Crank Nicolson scheme is much less as compared 
to the other schemes. The Crank Nicolson is more effi cient for the current population dispersion model. Plots indicate that the rise 
of the growth rate graph moves up vertically and with the rise of dispersion rate it initially moves forward and after a brief period it 
starts grazing along with the earth or horizontal line. Moreover, it resonates with the general concept of population growth. In the 
recent future, we are aimed at incorporating birth and death rates along with growth and dispersion and will make a comparison of 
the results of both.
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