Peertechz

1 Annals of

ANNALS OF . .
Mathematics and Physics 2

a
Z o
< >
»n ©
O x
=@
< ¥
=9
w n
I >
I
<a
=

ISSN: | 2689-7636 DOI:  https://dx.doi.org/10.17352/amp

Received: 05 July, 2023

Research Article Accepted: 18 July, 2023
Published: 19 July, 2023

Some fixed pOint reSUItS in *Corresponding author: Pankaj, Department of

Mathematics, Baba Mastnath University, Asthal Bohar,
Rohtak-124021, Haryana, India, E-mail: guran.s196@

rectangUIar metric Spaces gmail.com, maypankajkumar@gmail.com

Keywords: a-admissible mappings; Complete

Sarita Devi and Pankaj* rectangular metric space and Fixed point

Department of Mathematics, Baba Mastnath University, Asthal Bohar, Rohtak-124021, Haryana, India Copyright License: © 2023 Devi S, et al. This is an

open-access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

https://www.peertechzpublications.org

'.) Check for updates

Abstract

After motivation from Geraghty-type contractions and of Farhan, et al. we define a-admissible mappings and demonstrate the fixed point theorems for the above-
mentioned contractions in rectangular metric space in this study. In the end, we discuss some consequences of our results as corollaries.

2010 MSC: 47H10, 54H25.

Introduction

Banach provided a method to find the fixed point in the entire metric space in 1922. Since then, numerous researchers have
attempted to generalise this idea by working on the Banach fixed point theorem (see [1-9], [11-22],[26,27]). The term " « admissible
mappings in metric space" pertains to the innovative concepts in mappings that Samet, et al. [27] pioneered in 2012. Recently, in
2013 Farhan, et al. [2] gave new contractions using « -admissible mapping in metric spaces. In continuation of generalization of
Banach contraction principle, in 2018, Karapinar introduced the notion of interpolative contraction via revisiting Kannan contraction
which involves exponential factors. Combining the interpolative contractions with linear and rational terms several authors defined
hybrid contractions and proved fixed point theorems for these contractions see(16,24-25). We'll generalize Farhan's, et al. [2]
contractions in the following paper and provide fixed point theorems for them.

Preliminaries
To prove our main results we need some basic definitions from literature as follows:

Definition 2.1: [10] Let N be a set. A rectangular metric space (RMS) is an ordered pair (N,Q2) where Q is a function Q:XxX >R
such that

1. Q0,9>0,
2. Q0,9 =0iff 5=
3. Q0,9 =Q(4,0),

4 G, <N0,u)+Qu,v) +Q(v,9)
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Forall U,8,u,ve\N.
Definition 2.2: [10] A sequence {On} in RMS(X,Q) is said to converge if there is a point U €N and for every >0 there exists
NeN such that Q(0,,0)<€ forevery n> N .

Definition 2.3: [10] A sequence {U,} ina RMS(N,Q) is Cauchy if for every >0 there exists N €N such that Q(U,,U,,)<e for
every n,m>N.

Definition 2.4: [10] RMS(X,Q) is said to be complete if every Cauchy sequence is convergent.

Definition 2.5: [27] Let f:N—>N and g:8xN—[0,0). We say that f is an o-admissible mapping if «(U,9)>1 implies
a(f0,f9=1,0,9eN.
Main Results

Theorem 3.1: Let (N,Q) be a complete RMS and 7:N—N be an o - admissible mapping. Assume that there exists
a function f:[0,00)—>[0,1] such that, for any bounded sequence {fn} of positive reals, ﬁ(fn)—>1 implies ¢, >0 and
(@(0,T0)-a(9,T9) + XTOTI) L AMOBINM(B.9) 15 9 e and 121 (3.1)

QU,TV),Q9,TI) U, TOY(1+,TH))

0, 9) ’ 1+Q(0, 9) ;

where: M (0, 9) = max{Q(U, 9), A0, T0), (I, T),
Suppose that if T is continuous and there exists U, e such that « (U ol UO) 21, then T has a fixed point.
Proof Let U €N such that a(UO,TUO)Zl . Construct a sequence {U,} in X as U, ;=T0,, v,eN-

If 5 _,,=0,,forsome neN, then 70, =0, and we are done.

n+l
So, we suppose that Q(Un,Un+l) >0,VneN.

Since T is a-admissible, there exists U, €N such that a(UO,TUO) 21 which implies a(Uo,Ul)z 1.

Similarly, we can say that a(Ul,Uz):a(TUO,TZUO)Z 1.

By continuing this process, we get

a(6,,5,,,)21, VneN 3-2)

By using equation (3.2), we have

2Q[TU"—1’TU") s(a(un_l,mn_l)a(z;n,mn)+1)Q(TU"—1’TB”
Szﬂ[M[Un—l’U”]]M[Un—l’U”]
Now using equation (3.1), we get
Q(6,,8,,,)<B(M(B,,,8,))M(0,,,0,), (33)
Where
M(v,,,0,)=
Q(UnI’Un)’Q(On1’TUn1)’Q(Un’TUn)’Q(Un1’;’;25(;1)%(,1;0",0")
max e
Q(UM,TU,H)(l+Q(TUH,Un))

1+Q(0,,,0,)

n-1’

n
=max{Q(v,,,5,),2(,.,5,),2(5,,0,,)}

Citation: Devi S, Pankaj (2023) Some fixed point results in rectangular metric spaces. Ann Math Phys 6(2): 108-113. DOI: https://dx.doi.org/10.17352/amp.000089




g’ PeertechzPublications https://www.peertechzpublications.org/journals/annals-of-mathematics-and-physics 8

Assume that if possible Q(Un,UnH) > Q(Un_l,Un) .

Then, M (0, 1,0, )=Q(0,,0

n—1’ n+l ) :

Using this in equation (3.3), we get
(0,8, )< A(Q(04.0 ., ))2(010,,..) (3.4)
=0Q(0,,5,,,1)<Q(6.0,,,; ), which is a contradiction,

It follows that the sequence {Q(UWU” 11 )} is a monotonically decreasing sequence of positive real numbers. So, it is convergent
and suppose that limnW(Un,Un+l ) =d . Clearly, 7>¢.
Claim: d = o.

Equation (3.4) implies that

Q6,0

Mgﬁ(Q(Un_l,Un)gl

Q(v, .0,)

Which implies that limn—0f (Q(U 21’0 n) =1

Using the property of the function g, we conclude thatd = o, that is

im ©(6,.5,,)=0. (35)
In the similar way, we can prove that

Jim ©(06,.5, 5)=0 (3.6)

Now, we will show that Uy} isa Cauchy sequence. Suppose, to the contrary that {On} is not a Cauchy sequence. Then there

exists €>0 and sequences m(k) and n(k) such that for all positive integers k, we have n(k)>Vn(k)>k,Q(Un(k),Um(k))Zf and

Q(Un(k)’Um(k)—lj <e.
By the triangle inequality, we have
es< Q(Un(k)’Um(k)j < Q(Un(k)’Um(k)—l)+Q(Um(k)—1’6m(k)+l)+Q[Um(k)—l’6m(k)j

<e +Q[Um(k)_176m(k)+lj+Q[Um(k)—l’um(k)],

forall keN.
Taking the limit as k =+ in the above inequality and using equations (3.5) and (3.6), we get
im Q| O ,O =c.
N ot G
Again, by triangle inequality, we have
e e LY o AL S ATy
Y L Y s ey s A

Taking the limit as & — +% | together with (3.5) - (3.7), we deduce that
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kgﬁle(U”(k)*l’Um(k)fJ:f' (3.8)

From equations (3.1), (3.2), (3.6) and (3.8), we get

Q Q
2

Un(k)+l’Um(k)+1J S( Ot C iyt

“(“n(k)’mn(m)“(“mw)f “mac)]“j

AT TS i)

:[a(U”(")’TUn(k))“(Um(k)’TUm(k)]”j

PIM[S S ity M (B ity O (3.9)

<2

M [Un(k)—1’6m(k)—1j =
1Oyt Ot Py 2Ot Oy )

e Q(Un(k)—l’T O n(k)—lJQ(T Gm(k)—l’Um(k)—lj ’ Q(Un(k)—l’TUn(k)—lj[l+Q(T Um(k)—l’Um(k)—lj) .
1+Q(

Q(Un(k)—l’am(k)—l Un(k)—l’Um(k)—lj

Q(Un(k)—l’Un(k)j'Q(Um(k)—l’Um(k)]

Q(Un(k)—l’Um(k)—lj

Q(Gn(k)’Un(k)—lj(l+Q(Um(k)—1’6m(k)))
1+Q(

s

= IR I (SRR o Sy |

max

(-0
Taking k=0 , we have
M(Un(k)—l’Um(k)—lj =max{c,0,0,0,0}

So, equation (9) implies that

o e Y

Letting k> e get

1imk—>oo/3[9(0n(k),0m(k)J =1

By using definition of g function, we get

= im0 8, .0 |0 <<,

which is a contradiction.

Hence, {Un} is a Cauchy sequence.

Since (X,Q) is a complete space, so {Un} is convergent and assume that O, >0 as n — o0
Since T is continuous, then we have

TO= nhl)anUn = nli_r>nooUn+1 =0

So, U is a fixed point of T.
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Theorem 3.2: Assume that all the hypothesis of Theorem 3.1 hold. Adding the following condition:

If = T, then (U, TT) > 1

We obtain the uniqueness of fixed point.

Proof: Let zand Z  be two distinct fixed point of T in the setting of Theorem 3.1 and above defined condition holds, then

a(z,Tz)21 and a(z*,Tz*)Zl

So,

Q[TZ,TZ*}

2 < (1 +oa(z,Tz)a (z*,Tz* )jQ{TZ’TZ*J

g zﬁ’[M[z,z*HM{z,Z*] (3.10)

Q(z,z*),Q(Tz,z),Q(TZ*,z),

Where M (z,z*)=max Q(z,Tz).Q(TZ*,Z*) Q(z,Tz)(lJrQ(Tz*,z*)j

Q(z,z*) , 1+Q(z,z*)
:Q(z,z*)‘

So, equation (3.10) implies
Q(z,z*) = Q(TZ,TZ*) < ﬂ[Q(z,z*)jQ(z,z*)

:>ﬂ[Q(z,z*)):1

:Q(z,z*)=O:>z=z*

Corollary 3.3: Let (NX,Q) be a complete RMS and 7:N—N be an a-admissible mapping. Assume that there exists
a function f:[0,00)—>[0,1] such that, for any bounded sequence {fn} of positive reals, ﬁ(fn)—>1 implies ;=0 and

(@(5,T0)-a(9,T9) +1)Q(TU,T8) < BB9NNV,9) for all {5,9eX where />1. Suppose that if T is continuous and there exists

U €N such that a(OO,TUO)Zl , then T has a fixed point.

Proof: Taking A (U, 9)=(0,9) in Theorem 3.1, one can get the proof.
Corollary 3.4. Assume that all the hypotheses of Corollary 3.3 hold. Adding the following condition:
(@) IfU =T0U, then a(U,TV) > 1,
we obtain the uniqueness of the fixed point of T.
Proof: Taking M (U, %) =Q(0,9) in Corollary 3.3.
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