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Abstract

In this paper, we introduce a new matrix associated with polygons and polyhedrons, namely the covariance edges matrix. We show that, for a regular polygon or 
polyhedron the corresponding matrix is proportional to the identity of size two or three. Based on this fact, we propose, as an application, several algebraic shape quality 
measures for convex polygons or polyhedrons. Furthermore, this matrix may be related to the metric of a simplex. Future studies will be devoted to the defi nition of the 
covariance edges matrix for higher elements and real applications to mesh optimisation.
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Introduction

The resolution of physical phenomena formulated by 
partial differential equations using the fi nite element method 
requires a regular mesh (in the isotropic case) specifi cally for 
the convergence of the method. General discussions about 
mesh quality measures can be found in [1.2]. To quantify this 
regularity several shape quality measures have been introduced 
in [3,4] using various approaches and compared in [5-12] for 
simplexes in 2D and 3D. Many of them are implemented in the 
Verdict library [13].

Among all the possible defi nitions let us notice the radius 
ratio (or sometimes called aspect ratio)   [14]: 
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Where d is the dimension of space and rin, rout, are 
respectively the inradius and the circumradius of the simplex. 
Another well-known quality metric is the mean ratio n [5] 
(explicitly used in [15]) which was already used in [16] and 
redefi ned in [17]: 
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Those two measures are compared in [18] and used for 
instance in [19].

In [9] the author defi ne a new method to unify various 
mesh quality metrics using an algebraic approach.

In this paper, we introduce the covariance edges matrix 
which allows us to characterise the regularity of the mesh 
elements (polygons and polyhedrons). By analysing the 
eigenvalues of this matrix we defi ne several shape quality 
measures for convex elements.

C ovariance edges matrix

Let P be a polygon or a polyhedron in Rd (d = 2 or d = 3) with 

n edges and let denote its edge column vector by 
,1

,

=
i

i

i d

e

e
e

 
 
 
  
 

  as in 
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Figure 1. For our application, we can set ei = vj - vj or ei = vj′ - vj 
with vj and vj′ the two vertices of the edge ei.

Following [17,20], the covariance edges matrix N associated 
to P is defi ned as: 

1

=0

( )= .
n

T
i i

i

P e e


                     (2)

Each eiei
T is a symmetric rank-1 covariance matrix associated 

with an edge i of P. For a polyhedron in 3D, these matrices are: 

2
,1 ,1 ,2 ,1 ,3

2
,1 ,2 ,2 ,2 ,3

2
,1 ,3 ,2 ,3 ,3

= .

i i i i i
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As stated previously, we notice that each eiei
T and N does not 

depend on the direction (order of starting and ending point) of 
the vector ei.

For regular polygons (Lemma 7) or some polyhedrons 
(tetrahedrons in Lemma 14, cubes in Lemma 15, prisms in 
Lemma 16, and octahedrons in Lemma 18) we will show the 
regularity lemma: 

2( )= ,d

nP h I
d

                     (3)

Where h is the length of all edges, d is the dimension of 
the space (2 or 3), and ld is the identity matrix in Rd. Besides, 
we will show (Lemma 17) that for a regular pyramid, this 
matrix is only diagonal on some basis (and not proportional 
to the identity). However, the regularity of the pyramid can be 
obtained by completing the pyramid to obtain an octahedron 
(see Lemma 19).

Hence, for a regular polygon or specifi c polyhedron, the 
covariance matrix has one eigenvalue of multiplicity d. Based 
on the invariants of the covariance edges matrix we can thus 
defi ne several measures to quantify the gap between the 
eigenvalues for a general polygon or a polyhedron in order to 
obtain the corresponding shape quality measure.

At fi rst, we developed some properties of N. These 
properties are used to prove the above regularity lemma. Then, 
we proposed shape quality measures.

Prope rties of the covariance edges matrix

In this section, some properties of the covariance edges 
matrix are given, namely the positive defi niteness, the 
geometric invariants, and the commutativity with orthogonal 
matrices which keeps the polygon or polyhedron invariant. 
These properties will then be used to prove the regularity 
lemma in 2D and 3D.

Before the lemmas, we start with a remark that will be 
useful for the prisms and pyramids. 

Remark 1: A matrix proportional to the identity matrix ( ld) 
is invariant by a change of basis. This is not the case for a general 
diagonal matrix such as: 
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Genera l properties 

Lemma 1: N is a symmetric positive-defi nite matrix. 

Proof. N is symmetric by construction. Let X be a non-zero 
vector, we have: 
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And XTNX = 0 implies that X must be orthogonal to all ei 
which is only possible with X = 0, so XTNX > 0. 

Lemma 2 (Commutativity with special orthogonal 
matrices): Let Q be an orthogonal matrix that defi nes a bijective 
mapping between the edges. That is to say such that Qei = e�(i) with   
a permutation.

Q commutes with N. 

Proof. 
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               (4)

Which leads to QN = NQ as Q-1 = QT because Q is an orthogonal 
matrix. 

Example 1: An example of such Q for a regular polygon in 2D is 
the rotation matrix of angle 2=n n

  where n is the number of edges. 
Using, this rotation leads to Qei = ei+1 for 0 ≤ i < n with en := e0. 

Link with the  metric of simplex: In the case of a simplex 
(triangle in 2D and tetrahedra in 3D), one may fi nd a link 
between the covariance edge matrix N and the metric of the 
element M. This matrix is such that ei

TMei = 1. Besides in 
[17,20], they show that: 

11=
2

d  

Properties in  2D: From Lemma 1, N is symmetric. In this 
section, we will denote N as: 

21
,1 ,1 ,2
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b c e e e
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                 (5)
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Figure 1: Notations for 2D polygon and 3D polyhedron.
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First, the computations of the two invariants (trace and 
determinant) are made, then we use the commutativity from 
Lemma 2 to prove the regularity of Lemma 7 already stated in 
(3).

Invariants in 2 D: For d = 2, the two invariants (trace and 
determinant) of the covariance edges matrix N are linked to the 
squared edge length and the squared area of all parallelograms 
made up of two different edges as stated in Lemmas 3 and 4. 

Lemma 3 (Invariants in 2D: trace): For d = 2, the trace of the 
covariance edges matrix N is: 

1
2

=0

( )=
n

i
i

tr e


                      (6)

Proof. 
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Lemma 4 (Invariants in 2D: determinant): For d = 2, the 
determinant of the covariance edges matrix N is: 

2
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              (7)
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Remark 2: The sum (7) is composed of the area of all 
parallelograms made with two diff erent edges. In the case of a 
triangle, this sum may be simplifi ed to: 

2det( )=3(2| |)T

with |T| the area of the triangle T. 

Invariances by isome tric transformations in 2D: In 
Lemmas 5 and 6, we show the form of the covariance edges 
matrix when the polygon is invariant by refl ection or rotation. 

Lemma 5 (Effects of 2D refl ections): Consider a polygon P 
in 2D. If this polygon is invariant by a refl ection then the covariance 
edges matrix is diagonal. 

Proof. In 2D the two main refl ections are: 

1 0 1 0
= =

0 1 0 1x yQ Q
   
   

   

From Lemma 2, we know that QXN = NQX, it leads to: 

= =0x xQ Q b 

The same computations can be done with QY and we have 
in both cases: 

0
=

0
a

c
 
 
 



Lemma 6 (Effects of 2D rotations): Consider a polygon P in 
2D. If this polygon is invariant by a rotation of angle  (diff erent of 
0[ ]) then the covariance edges matrix is proportional to the identity: 

2= aI

Proof. Let Q be the rotation matrix of angle  which let 
invariant P: 

cos( ) sin( )
= =

sin( ) cos( )
C S

Q
S C

 
 

    
   
   

With S ≠ 0 as the angle is different of 0[π]. The case  = 0[π] 
is not meaningful, as Q = ± l2.

From Lemma 2, we know that QN =NQ. Using the notations 
from (5), we have: 

=
=

=
aC bS aC bS

Q Q
bC cS aS bC

   
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 
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aS cS

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


=0
= as 0

b
a c S

 



So 2= aI . 

Applications in 2D

Lemma 7 (Ap plications to regular polygons in 2D): For a 
regular n-gon in 2D with an edge length of h, the generic formula (3) 
holds and the covariance edge matrix is equal to: 

2 2
2= =

2d

n nh I h I
d



Proof. Using Lemma 6 with a rotation of angle 2=n n
  we 

get N = al2. Besides, from (6) of Lemma 3, we have a regular 

polygon tr(N) = nh2. Moreover, we know that tr(N) = 2a. We can 

conclude that 2
2=

2
n h I . 

Remark 3: Using the polar coordinates of the vertices a proof of 
Lemma 6 and 7 can be made using direct computations. 

Properties in 3D: We are now work ing with polyhedrons in 
three dimensions (d = 3). With Lemma 1, N is symmetric and 
we will denote N as: 

2
,1 ,1 ,2 ,1 ,3

21
,1 ,2 ,2 ,2 ,3

2
=0 ,1 ,3 ,2 ,3 ,3

= = .

i i i i i

n
i i i i i

i i i i i i

e e e e e
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               (8)

Invariants in 3D: When using a mat rix of size three, we have 
three invariants: determinant, trace, and  1 the coeffi cient of 
degree one in the characteristic polynomial of the matrix: 

3 2
1( )= ( ) det( ).P tr                              (9)
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 In Lemmas 8, 9, and 10 we compute these invariants. 

Lemma 8 (Invariants in 3D: trace): As in 2D in Lemma 3 the 
trace gives the sum of the squared length of all edges: 

1
2

=0

( )=
n

i
i

tr e

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Proof. 

1 1
2 2 2 2
,1 ,2 ,3

=0 =0

1 2 3

( ) = ( )=

=

n n
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i i

tr e e e e

  

 

 

 

   

Lemma 9 (Invariants in 3D: $_1$): Proof. Computations 
give the following formula for the invariant  1: 

1 1 2 1 3 2 3
2 2 2

11 22 11 33 22 33 12 13 23

=

=

       

            

Remark 4: For a tetrahedron, computations done in Chapter One 
of [17] give: 

1
2

1
=0

= | |
F

f
f

T


                    (10)

Where | Tf | is the area triangle face f. 

Lemma 10 (Invariants in 3D: determinant): Proof. The 
determinant is: 

11 22 33 12 13 23
2 2 2

11 23 22 13 33 12

1 2 3

det( ) = 2

=  



  

      

     

Remark 5: Following the computations from [17,20] we have for 
a tetrahedron: 

2
2 21 2 ( !)det( )= | | =576| |

2 1

d dd d T T
d

 
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

Where |T| is the volume of the tetrahedron. 

Remark 6: It is more complex to extract geometric expressions of 
det(N) and   1 for other regular polyhedrons. 

Invariances by isometric transformations  in 3D: In the 
following lemmas, we show the form of the covariance edges 
matrix when the polyhedron is invariant by various isometric 
applications. 

Lemma 11 (Effects of 3D axis refl ections): Consider a 
polyhedron P in 3D. If this polyhedron is invariant by two refl ections 
around planes then the covariance edges matrix is diagonal. 

Proof. Let Q be the refl ection around the plane z = 0: 

1 0 0
= = 0 1 0

0 0 1
rzQ Q

 
 
 
  

 If the polyhedron is invariant by Q Lemma 2 holds and we 
have QN = NQ. This leads to: 

0
= 0

0 0

a b
b d

f

 
 
 
 
 



In the case of the refl ection around the plane y = 0 we have: 

0
= 0 0

0

a c
d

c f

 
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 
 
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

and for the plane x = 0: 

0 0
= 0

0

a
d e
e f

 
 
 
 
 



If two of the three refl ections let the polyhedron invariants, 
we can conclude that N is diagonal. 

Lemma 12 (Effects of 3D axis rotations) Consider a 
polyhedron P in 3D. If this polyhedron is invariant by a rotation 
around one axis with an angle  ( ≠ 0[π]) then the covariance edges 
matrix is diagonal. 

Proof. Let Q be the rotation matrix around the z-axis with 
 angle: 

cos( ) sin( ) 0
= ( )= sin( ) cos( ) 0

0 0 1
zQ R

 
  

 
 
 
 
 

We avoid the case   ≠ 0[π] in order to remove the case Q = 1 
and the case of the refl ections done previously in Lemma 11 as 

Rz(π) = -Qrz.

In this case, if the polyhedron is invariants by Q, Lemma 2 
holds and computations similar to the ones done in 2D (Lemma 
6) of NQ = QN give: 

0 0
= 0 0

0 0

a
a

f

 
 
 
 
 



With Q = Ry()it leads to: 

0 0
= 0 0

0 0

a
d

a

 
 
 
 
 



and for Q = Rx()we have: 

0 0
= 0 0

0 0

a
d

d

 
 
 
 
 



In all three cases, the covariance edges matrix is diagonal. 

Lemma 13: Let P be a regular polyhedron with n edges with the 
length of h which is invariant by two rotations of angle diff erent of 
0[π] with two diff erent axis. The generic formula (3) holds and the 
covariance edges matrix is equal to: 

2= d

nh I
d



Proof: Let us build a basis by taking the two rotations axis 
and a third vector. On this basis, we can apply twice Lemma 12 
to get a matrix proportional to the identity N = al3. Then using 
Lemma 8 and the computations of trace (8) we get tr(N) = 3a = 

nh2. It leads to 2
3=

3
nh I .

Besides, as the covariance edges matrix is proportional to 
the identity it will be the same in all bases as stated in Remark 
1. 
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Applications in 3D

Lemma 14 (Applications to tetrahed rons): For a regular 
tetrahedron with an edge length of h, the generic formula (3) holds 
and the covariance edge matrix is equal to: 

2 2
3= =3d

nh I h I
d



Proof: A regular tetrahedron is invariant by rotations of the 
angle 2

3
  around the axis from one vertex to the center of the 

opposite face. Applying Lemma 13 gives the results. 

Lemma 15 (Applications to cubes): For a regular cube with 
an edge length of h, the generic formula (3) holds and the covariance 
edge matrix is equal to: 

2 2
3= =4d

nh I h I
d



Proof: A cube is invariant by three rotations of angle 2


 with 

an axis going from the center of the current face to the opposite 

face. Lemma 13 holds and we get N = 4h2l3. 

Remark 7: The proof can also be done by considering the cube as 
a prism with a square basis (see Lemma 16). 

Lemma 16 (Applications to prisms): For a regular m-prism 
with n = 3m edges of size h, the generic formula (3) holds and the 
covariance edge matrix is equal to: 

2= d

nh I
d



Proof: Let be a basis with the two fi rst vectors inside the 
plane of the m-gon. Let be the last vector orthogonal and 
going from the center of one polygon to the other. Along this 

last vector, a prism is invariant by a rotation of angle 
2
m


, so 
Lemma 12 applies and we get: 

0 0
= 0 0

0 0

a
a

f

 
 
 
 
 



Let v be one edge vector collinear to the rotation axis. We 
have Nv = fv. Besides: 

=0 =0 =0 =0

= ( ) = ( )= ( ) = ( )
n n n n

T T T
i i i i i i i i

i i i i

v e e v e e v e v e e v e   

For all ei in the two m-gons we have (ei v) = 0. For the 
others, we have (ei v)ei = h2v as all the vectors are collinear. This 
leads to Nv = mh2v. From Lemma 8 and the computations of 
the trace (8), we have that tr(N) = nh2 = 3mh2 and here we have 
tr(N) = 2a+f. Everything leads to: 

2 2
2

2

= = =
= = .3

3
( ) =2 =

nv fv mh v h v na f h
tr a f nh


 
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



We can conclude that 2
3=

3
n h I . This result is valid on all 

basis as stated in Remark 1. 

Lemma 17 (Applications to square pyramids): For a regular 
square pyramid with an edge length of h, the generic formula (3) 
does not apply as the covariance edges matrix is only diagonal on a 
specifi c basis. This basis is defi ned by taking the two fi rst vectors in 
the plane of the square. The last vector is orthogonal to the two fi rsts 

and goes from the center of the square to the opposite vertex. On this 
basis, the covariance edges matrix is: 

2

3 0 0
= 0 3 0

0 0 2
h

 
 
 
 
 



Proof. In a basis where the last vector is going from the 
center of the square to the opposite vertex, Lemma 12 applies 

with an angle of 
2


 and we get in this basis: 

0 0
= 0 0

0 0

a
a

f

 
 
 
 
 



From Lemma 8 and the computations of the trace (8) we 
get: 

2 2( )=2 = =8 .tr a f nh h

Let e0 be one side of the square as in Figure 2. We have: 

0,

0 0, 0 0,= = ,as =0

0

x

y z

ae

e ae ae e

 
 
 
  
 



By recomputing directly this product, we get: 

1

0 0
=0

=( )
n

T
i i

i

e e e e




1

0
=0

= ( )
n

T
i i

i

e e e




0 0 0 1 0 1 2 0 2 3 0 3

square

=( ) ( ) ( ) ( )T T T Te e n e e e e e e e e e  


4 0 4 5 0 5 6 0 6 7 0 7

triangles

( ) ( ) ( ) ( )T T T Te e e e e e e e e e e e   


2 2 2
0 2 4= 0 ( )( ) 0 0.5h e h e h e    

2 2 2
5 6 70.5 0.5 0.5h e h e h e  

2
0 0 4 5 7 6= ( 0 0 0.5( ) 0.5( ))h e e e e e e      

2
0 0 2= (2 0.5( ) 0.5( ))h e e e  

2
0 0 0= (2 0.5( ) 0.5( ))h e e e 

2
0=3h e

Everything leads to: 

2 2

2 2
0 0 0

( ) =2 =8 =2
= =3 =3

tr a f h f h
e ae h e a h

   
 




 
e 0  

e 1  
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e 3  
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e 5  e 6 e 7 

Figure 2: Indexes of vectors in a square pyramid.
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We can conclude that for a regular square pyramid on a 
specifi c basis, we have: 

2

3 0 0
= 0 3 0

0 0 2
h

 
 
 
 
 



Remark 8: From Remark 1, we recall the fact that the covariance 
edges matrix for a pyramid is only diagonal in a basis composed of 
two vectors in the square, and the third vector is orthogonal to the 
two fi rsts and going from the center of the square to the opposite 
vertex. 

Lemma 18 (Applications to octahedrons): For a regular 
octahedron with an edge length of h, the generic formula (3) holds 
and the covariance edge matrix is equal to: 

2 2
3= =4d

nh I h I
d



Proof. An octahedron is invariant by three rotations of angle 

2


: 

1. one with the axis from the center of the square to the two 
vertices not belonging to the square 

 2. two with the axis joining two opposite vertices of the 
square. 

Lemma 13 holds and we get N = 4h2l3. 

Lemma 19 (Applications to symmetrized pyramids): As 
a pyramidal element is not a regular polyhedron, we propose to 
complete this element by a symmetric part to obtain an octahedron. 
To this end, the opposite apex is the symmetrical point of the current 
apex with respect to the centroid of the opposite quadrilateral face. 
For the obtained octahedron one can apply Lemma 18 to get: 

2 2
3= =4d

nh I h I
d



Remark 9: The formula (3) is verifi ed numerically for all fi ve 
Platonic solids, all thirteen Archimedean solids, and some of the 
Johnson solids. It is not valid for anti-prisms (as for the square 
pyramid). 

Shape quality using the covariance edges matrix

Shape quality measures: The covari ance edges matrix N 
is proportional to the identi ty of regular elements which are 
isotropic. When moving to anisotropic elements, this matrix is 
no more proportional to the identity. One may use this property 
to defi ne shape quality measures.

One of the possible shape quality measures of a polygon P 
is defi ned as: 

min

max

( )=q P




Where min and max are the smallest and greatest eigenvalues 
of the covariance edges matrix N. This ratio of the eigenvalues 
defi nes the anisotropy of the matrix.

If the computations of eigenvalues are too costly, one may 
use the ratio of the means of the eigenvalues as an alternative, 
as we can use the invariants of the matrix to defi ne means. 

In 2D, the computations of the Arithmetic, Geometric, and 
Harmonic means of 1 and 2 give: 

1 2

1/
1 2

1 2

1 2

1 2

( )= =

=( ) = det( )
det( )= = =

1 1 ( )

d

trA
d d

G
dH d d

tr

 

 
 
 

 












Let us recall, that these two eigenvalues are real and positive 
as the covariance edges matrix is symmetric positive-defi nite 
(Lemma 1). The means are then positive. Besides, let us notice 
that 0 < H ≤ G ≤ A. We can then, defi ne qualities between 0 and 
1 by computing the ratio of two means: 

= = =GA HA HG

G H Hq q q
A A G

One can easily notice that qGA = qHG and that qHA = q
2
GA. Besides, 

for a triangle, these new qualities are equivalent to the mean 
ratio   (1) as we have: 

2

1
2

=0

2
2

=0

det( )
( )= ( )= ( ) =2

( )

3(2| |)
=2

| |=4 3

= ( )

GA HA HG

n

i
i

i
i

q T q T q T
tr

T

e

T

e

T










 

 

Extension of the quality for degenerated elements 

In the case of a degenerated quadrilat eral: 

0 1 0 0
= = = =

0 0 0 1
O A B C

       
       
       

the covariance edges matrix is: 

2 0
= 0 2
 
 
 
 
 



Which gives, q = qGA = 1 which is not satisfactory as we 
want to avoid such elements. To overcome this diffi culty, 
we introduce the jacobian of the elements in the quality, for 
instance: 

1

min min

max max

( )=J

J
q P

J

 







   
      
   

                 (11)

where  is a parameter to give more or less infl uence to the 
Jacobian and Jmin (Jmax) is the minimal (maximal) value of the 
Jacobian over the elements. In the next sections, we set  = 1/3.

Applications on triangles: In the spirit of [11] we computed 
in Figure 3 the qualities of tr iangles ABC defi ned as: 

1 /2 0
= = =

0 1 /2
x

A B C
y

     
     
     

For each point, B(x,y) we compute the quality of the 

resulting triangle. In the case of triangles, the value of min

max

J
J  in 

(11) is equal to one. The results show a behaviour similar to the 
mean ratio   (1) 

Applications on quadrilaterals: Using the same idea for 
quadrilaterals, we computed in Figures  4,5 the qualities of 
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various quadrilaterals. For the quadrilaterals, the ratio min

max

J
J

 of 

(11) is computed using the minimal and maximal values of four 
determinants [21]: 

OA OC OA AB CB OC CB AB

The comparison is made between qj (11) and the quality 
defi ned as: 

[1;4]
( )= ( ( ))min i

i
q Q T


                  (12)

where the Ti is one of the four possible triangles made in a 
quadrilateral Q when cutting it into two triangles.

Figure 4 is obtained for several quadrilaterals OABC defi ned 
as: 

0 1 0
= = = =

0 0 1
x

O A B C
y

       
       
       

In this case, the element with the greatest quality is the 
unit square S according to both qualities as qj (S) = q(S) = 1. 

Figure 5 is obtained for several quadrilaterals OABC defi ned 
as: 

0 2 0
= = = =

0 0 1
x

O A B C
y

       
       
       

In this second case, the two qualities differ. In Figure 6, 
the elements with better quality are presented. qj tends to 
have the best element for (x,y) = (1.35,2.05) with a quality near 
0.67 whereas when splitting into two triangles (12) it gives a 
maximum for (x,y) = (1,2) with a quality of 0.8. The choice of 
qj may be better as the element is more isotropic (the ratio 
of the minimal length over the maximal length of edges is 
greater). Besides, only on global maximum is found whereas 
when splitting into triangles there is a zone where all the 
quadrilaterals have a quality near 0.8 which is not convenient 
to do optimisation on shape quality measure. 

Conclusion

 A new algebraic shape quality measure for polygons and 
polyhedrons is introduced. This m easure depends only on 
the covariance edges matrix, namely the ratio between the 
smallest and the greatest corresponding eigenvalues. Using 
the invariants of this matrix, several alternative shape quality 
measures are also proposed. In particular, one of the proposed 
measures, applied to simplicial elements, coincides with a 
known geometric measure. Hence, this measure can be seen as 
a generalisation to other elements. The novelty of this measure 
is its generality: in this work, it is applied only to triangles 
and quadrilaterals but future developments will focus on 3D 
applications. The application to mesh optimisation is the next 
step and the main advantage of this new measure is the fact 
that it is the same expression for all elements.

As shown in [17] and recalled in Section 3.2, the covariance 
edges matrix is related to the metric of the element for 
the simplicial element. It is interesting to investigate the 
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Figure 3: Comparison of qualities on triangles (left: qJλ (11), right: η (1)).
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Figure 5: Comparison of qualities for quadrilaterals with two edges from a rectangle 
(left: qJλ (11), right: mini�[1;4](η(Ti)) (12)).

Figure 6: Comparisons of elements giving the best quality.
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generalisation of the metric element for non-simplicial 
elements based on the covariance edge matrix.

The extension of the covariance edges matrix to high-order 
elements may require more investigation, in particular, the 
element edges are curved, and differential geometric must be 
taken into account.
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