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Abstract

Traditional deterministic modeling of epidemics is usually based on a linear system of differential equations in which compartment transitions are proportional to their 
population, implicitly assuming an exponential process for leaving a compartment as happens in radioactive decay. Nonetheless, this assumption is quite unrealistic since 
it permits a class transition such as the passage from illness to recovery that does not depend on the time an individual got infected. This trouble signifi cantly affects the 
time evolution of epidemy computed by these models. This paper describes a new deterministic epidemic model in which transitions among different population classes 
are described by a convolutional law connecting the input and output fl uxes of each class. The new model guarantees that class changes always take place according to 
a realistic timing, which is defi ned by the impulse response function of that transition, avoiding model output fl uxes by the exponential decay typical of previous models. 
The model contains fi ve population compartments and can take into consideration healthy carriers and recovered-to-susceptible transition. The paper provides a complete 
mathematical description of the convolutional model and presents three sets of simulations that show its performance. A comparison with predictions of the SIR model is 
given. Outcomes of simulation of the COVID-19 pandemic are discussed which predicts the truly observed time changes of the dynamic case-fatality rate. The new model 
foresees the possibility of successive epidemic waves as well as the asymptotic instauration of a quasi-stationary regime of lower infection circulation that prevents a 
defi nite stopping of the epidemy. We show the existence of a quadrature function that formally solves the system of equations of the convolutive and the SIR models and 
whose asymptotic limit roughly matches the epidemic basic reproduction number.
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Introduction

The current COVID-19 pandemic highlights the relevance 
of reliable theoretical modelings able to provide correct 
predictions of epidemy propagation and extension. In the 
recent past, a great effort has been devoted to trying to give 
correct representation to such phenomena as infection latency 
before symptoms onset, the time required for healing, the 
role of asymptomatic individuals in epidemy propagation 
[1,2] and so forth. Several authors [3-8] have attempted to 
improve the likelihood of deterministic modelings trying to 
increase the number of model compartments or introducing 
a delay between the time of pathogen exposition and that of 
inclusion in the infected compartment [8-14]. Other works 
[15-17] have investigated the ability to predict epidemic 

dynamics of distributed delay models, which represent delays 
by introducing differential equations convolutions with some 
functions that model class transitions. Unfortunately, these 
modelings (delayed and time distributed) do not guarantee 
that time elapsed between exposition and illness is correctly 
distributed because they act on compartment populations 
rather than on fl uxes among them. Despite expectations, these 
models do not control the time interval between entering 
and leaving a given class (compartment) and how this time 
lag is distributed when considering many class transitions. 
Moreover, the delay is usually introduced to model the 
incidence rate, while all other passages between different 
compartments only rarely are delayed. Nonetheless, also these 
class transitions need a realistic time distribution for the 
theoretical model to be able to provide realistic predictions of 
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epidemic propagation. Evidently, this lack of likelihood can 
reduce the accuracy of quantitative predictions forecasted by 
these models when investigating epidemic evolutions. This 
point, which will be discussed in the following, has also been 
addressed in [18] although in the framework of stochastic 
modeling. Many authors have investigated the effects on the 
dynamical behavior of deterministic models when including 
in their equations a nonlinear incidence or recovery rate 
[19-23], proving the occurrence of bifurcations [24]. The 
nonlinear terms originated trying to include into the model 
the effects of systemic phenomena such as the availability 
of hospital beds on the recovery rate, or restrictive measures 
dictated by governments. The mathematical formulation of 
these nonlinearities is however arbitrary, and no way exists to 
prove the physical foundation of different models of the same 
phenomenon. Din et al [25,26] have proposed the application 
of fractional order Atanganaa–Baleanu Caputo derivative 
to the theoretical modeling of the Hepatitis B epidemic, 
also differentiating acute infected from chronically infected 
individuals. An emerging approach is the application of data 
assimilation techniques to the standard or a modifi ed version 
of the SIR model [27]. This option leads to a modifi ed Kalman 
fi lter, which would be specifi cally suited to solve the problem 
of parameter estimation stemming from epidemic data.

In this paper, we outline a new type of deterministic 
epidemic modeling that include fi ve population compartments 
and introduces the concept of fl uxes among them. Classes are 
considered time-invariant linear systems that connect the 
input to output fl uxes, making it possible to account for the 
time evolution of each population class. The model guarantees 
a parametric temporal distribution of infection evolution that 
is dictated by the impulse response function associated with 
each class transition. Due to its mathematical structure, the 
new model prevents impossible phenomena (class transitions) 
such as some population fraction that persists into the infected 
class for a too short (e.g.: null), or too long (e.g.: years), time 
interval. The model can allow restored people to come back 
into the susceptible class, giving rise to successive epidemic 
peaks, and predicts the existence of “evanescent” epidemic 
waves circulating for a long time even for basic reproduction 
numbers less than a unit. Due to its mathematical structure, the 
model holds thirteen free parameters that can fi t its behavior 
to different kinds of diseases.

The paper shows the outcomes of simulations executed to 
assess the performance of the new model in comparison with 
the SIR, and for the current COVID-19 pandemic.

The remainder of this paper is organized as follows. In Sect. 
2.0 a self-contained description of the mathematical structure 
of the model is given, highlighting the main mathematical 
differences with previous epidemic modelings (e.g.: the SIR). 
Sect. 3.0 reports the software implementation of the model 
that has been adopted to perform simulations of epidemics 
shown in Sect. 4.0. Here three sets of simulations are shown 
that demonstrate the model's capability to foresee successive 
epidemic waves, its ability to account for some phenomena 
typical of the COVID-19 pandemic and its asymptotic behavior. 
Sect. 5.0 resumes the principal fi ndings of this work.

Material and methods

The convolutional model of epidemics

 The new model assumes that the whole population can 

be divided into fi ve classes, as specifi ed below.

 The susceptible class s(t) contains those individuals 

who can be infected.

 Exposed individuals e(t) got in contact with the pathogen 

but do not have developed the related illness yet.

 Infected/sick class i(t) is constituted by persons who fell 

ill.

 Restored r(t); those people who recovered from infection 

of, or exposition to, the pathogen agent. 

 Deceased class d(t). Individuals who died due to the 

infectious agent.

We assume the above functions of time are relative 

abundances (frequencies) of the corresponding class 

normalized to the whole population, with unitary sum s(t)+ 

e(t)+ i(t)+ r(t)+ d(t) = 1. Class transitions happen according to 

the scheme of Figure 1.

It is worth noting that a part of the exposed persons can 

turn into the restored class as being healthy carriers or quasi-

asymptomatic, while a fraction of restored people can become 

newly susceptible.

Fluxes among classes in Figure 1 are input and output 

derivatives of the related class abundances, as exemplifi ed 

in the relationship below for the fl ux  ts between the 

susceptible and exposed:

 
   

0
de tds t InpOutts dt dt

     .             (1)

We assume that fl uxes and input derivatives always are 

non-negative, while output derivatives are non-positive. 

With this convention, the algebraic sum of input and output 

derivatives equates to the total time derivative that can be 
written as a function of fl uxes.

Figure 1: Layout of the new convolutional model. The symbols Φ… (t) represents the 
fl uxes among the various population categories (fraction of people that in the time 
unity fl ows from one category to another).
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     

       

       

       

   

ds t
t ts rdt

de t
t t ts ereidt

di t
t t tei ir iddt

dr t
t t ter rirdt

dd t
tiddt


  




   



   



   


  
                (2)

The system of equations (2) needs to be completed by 
additional equations that specify the rules for computing the 
six fl uxes.

All fl uxes, except  ts , are calculated according to a 
convolutional model that links the input signal (fl ux) of a class 
with its output, adding delay and spreading which are regulated 
by the Impulse Response Functions (IRFs) characteristic of 
each class transition. These IRFs are representative of specifi c 
biophysical phenomena, such as the incubation period of the 
disease (for e(t) to i(t) transition) or the healing time i(t) (to 
r(t)). IRFs are indicated in Figure 1 near the exit fl uxes of each 
class.

Let us consider the Input/Output (I/O) relationship for 

a generic class with an input fl ux  tInp  and an exit fl ux

 tOut . The relative population abundance  dInp    

entering the class between  and   d  is subsequently 
transferred into the output fl ux at time  t according to the IRF 

 h t  :

     d t d h tInpOut       .                         (3)

This equation implies that class transition is stationary 
(aka Time-Invariant, TI): delaying the input fl ux results in a 
delayed version of the output fl ux without affecting its profi le. 
Assuming the epidemy broke out at time t = 0 (all fl uxes are zero 
for negative times), we fi nd the total output fl ux at the time  
by integrating the input contributions over all the instants  
preceding t:

         0
tt h t d h t dInp InpOut      

        .   (4)

The right-hand side of Eq. (4) is the convolution between 
the input fl ux and the IRF for the considered class transition, 
meaning that class transitions behave like a TI Linear System 
(LS). The causality of this LS is guaranteed since admitted IRFs 
are null for negative values of their argument (input time  
in the future of the output time t). This feature allows us to 
arbitrarily extend the upper bound of the integral on the right-
hand-side of Eq. (4). Conservation of the relative number of 
individuals throughout the class transition is guaranteed by 
the unitary area of function h(t). These conditions are recapped 
by the following equations.

 
 
0  0

10

h t t

h d 

   
  

               (5)

We propose gaussian IRFs for our model, bell-shaped 
functions that are frequently adopted to fi t epidemic data 
[28] and that avoid unrealistic wings for large t. However, the 
IRS's profi le may be characteristic of the modeled disease and 
should be adapted accordingly. A typical instance of gaussian 
IRF is detailed in Eq. (6) where T is the average delay of class 
transition taking place and  it's spreading.

   2exp 22 2 22

t TAh t


   
 
 

                (6)

Whenever the fl ux  ts  is known, the iterative application 
of Eq. (4) to each class of Figure 1 leads to the determination of 
all other fl uxes.

To ascertain the fl ux  ts , it is necessary to fi nd the 
probability dP0 for a susceptible to come in contact with the 
pathogen in a given time interval dt. dP0 is given by the average 
frequency of encounters f0 between two individuals of that 
population multiplied by the conditional probability that one 
belongs to the susceptible class and the other to the exposed 
or infected classes. We assume that exposed and infected 
individuals can both transmit the infection, a characteristic 
that seems important for such diseases as COVID-19. This 
probability is outlined by the equation below:

   
 

   
 

2 20 0 02 2
1 1

e t s t i t s t
dP f dt f dt

d t d t
 

        
.  

                  (7)

A casual encounter between a susceptible and an individual 
of class i(t) or e(t) can happen in two distinct orders generating 
factor 2 on the right-hand side of Eq. (7), and the subsequent 
Eqs. (8,9). If the two individuals are indicated as A and B, the 
encounter between a susceptible and an infected takes place 
either as    ,A i t B s t  , or as    ,B i t A s t  , both with 

probability
   

  2
1

i t s t

d t   
. The probability that a randomly chosen 

individual belongs to the infected compartment is
 
 1

i t
d t

, and 

the correction factor  1 d t     is the total living population 

and expresses the condition that dead individuals cannot 
participate in encounters. Previous models [3,29] neglect 
this correction, underestimating the conditional probability 
of casual encounters. Only a fraction of these contacts, called 
transmissibility, can truly transmit the pathogen, and this 
factor should be lesser for exposed than infected people. Let b 
indicate the transmissibility for infected individuals, and  . b, 
with 1  , be the transmissibility of exposed ones. Multiplying 
the two addenda of dP0 by the respective transmissibility, we 
obtain the people's amount  t dts  leaving the susceptible 
class within the time interval dt:

     
 

   
 

2 . 20 02 2
1 1

e t s t i t s t
t dt b f dt b f dts

d t d t
    

        

.          (8)
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This relationship can be conveniently condensed as shown 
in Eq. (9): 

       

 

0

2 2
 

1

k bf

e t i t s t
t ks

d t





     
   

              (9)

Using this outcome, it is possible to write the equations that 
govern the time evolution of I/O fl uxes.

       
 

       

     

     

       

       

22
1

1 0

0

0

1 0

0

s

ei s e

er s e

ir ei ir

id ei id

r er ir r

e t i t s t
t k

d t

tt h t d

tt h t d

tt h t d

tt h t d

tt t t h t d



   

   

   

   

  

     
    

     


     


     


      



        











                 

        (10)

     

 
   

 
   

     

2

222 22
2

222 22

2

222 22

2

222 22

t TA u t eeh t expe
ee

t TA u t irirh t expir
irir

t TA u t ididh t expid
idid

t TA u t rrh t expr
rr









       
  
           


      
 
 

       
  

   
                 

 (11)

Eqs. (2,10-11) form the new convolutional model described 

in this work. The four parameters Ae, Air, Aid, and  Ar are area 

normalization constants of the related IRFs and are implicit 

functions of the delay and dispersion. u(t) is the Heaviside 

step function that makes IRFs null for negative values of their 

argument,  [1-] is the fraction of exposed people who recover 

without developing illness [fall sick], and  [1-] is the fraction 

of sick individuals who recover [die].

Remarkably, the output fl uxes in the epidemic model 

discussed in this work are not represented by a decay process 

as happens in almost all deterministic epidemic modelings [3, 

4, 15, 27, 29, 30]. It should be noted that the exponential decay 

is an improbable assumption for epidemic models because the 

output fl ux is proportional to the abundance of the considered 

class irrespective of when people entered it. Due to this 

essential feature, the convolutional model avoids impossible or 

implausible events such as the recovery or death of infected 

people immediately after their infection. In different wording, 
the model herein discussed can provide a realistic timing for 
the passage of population fractions among existing model 
compartments.

Let us note that while each class population is the 
probability that a randomly selected individual belongs to 
that class, the IRFs h(t-) are proportional to conditional 
probability functions; i.e.: the probability that an individual 
leaves the considered class at time t provided that he entered 
that class at time ≤ t. In different wording, IRFs behave like 
“time propagators” for fl uxes among classes and, indirectly, 
for class probabilities(s(t), e(t), i(t), r(t), and d(t)).

Table 1 details the free parameters of Eqs. (10,11) necessary 
to fi t the model to the epidemy of interest. The possibility that 
recovered persons turn back into the susceptible class can be 
precluded by taking = 0.

The two output fl uxes of the class i(t) are regulated by 
different IRFs, hir (t) toward the restored class and hid (t) toward 
the deceased class. This means that this model can provide 
different timing of evolution for the fraction of infected people 
who die with respect to those who survive the disease.

The asymptotic behavior

Due to the IRFs‘ normalization, the overall death rate of the 

new model equates (1-).(1-). Whenever = 0, the asymptotic 

limit of susceptible and death classes (  lims s t
t

   and) 

 limd d t
t

 
 are linked together with the death rate by 

the simple relationship shown below:

     1 1 1d s                         (12)

The convolutional model admits a quasi-stationary solution 

in which i(t) and e(t) are almost constant, with vanishing 

derivatives. Imposing this condition into Eqs. (2) leads to the 

equations below.

Table 1: Parameter in the convolutive epidemiological model.

Te Time delay for the  e(t) to i(t) transition, i.e.: the average incubation period

σe The standard deviation for the  e(t) to i(t) transition

Tir Time delay for the i(t) to r(t) transition, i.e.: the average healing time

σir The standard deviation of the transition from i(t) to r(t)

Tid Time delay for the i(t) to d(t) transition, i.e.: the average dying time

σid The standard deviation of the transition from i(t) to d(t) 

Tr

Time delay for the transition from r(t) to s(t) i.e.: the average time for immunity 
losing 

σr The standard deviation of the r(t) to s(t) transition

α
Fraction of exposed people that recover from contagion without developing 

illness

β
Fraction of infected people that recover from contagion after developing 

illness

γ Fraction of recovered people that become newly susceptible

k The disease transmission rate for infected people

ε The relative disease transmission rate for exposed people
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       
       

0

0

de t
t t ts ereidt

di t
t t tei ir iddt

      

      







         (13)

Substituting the second of these relationships into the fi rst, 
we obtain:

       t t t ts erir id                     (14)

Eq. (14) proves that in this regime the decrease of 
susceptibles is continuously absorbed by the restored and 

deceased classes, apart from the  tr  fl ux transporting 
recovered persons back into the susceptible class. Simulations 
performed with our model show this asymptotic behavior for 
large t frequently.

Basic reproduction number

The estimation of the basic reproduction number [31] of the 
convolutive model is made complex by the circumstance that 
two classes, e(t) and i(t), can transmit the infection, giving rise 
to three outfl ows having different time constants. Using the 
same fl ux weighting shown in Eqs. (10-11) we write:

   2 2 1 10R k T k T T Te e ir id                  (15)

The equation above holds true under the assumptions listed 

below.

 The standard deviation of each IRF is far below the 

related delay; e. g.: Te e  . Whenever the standard 

deviation is comparable to (or greater than) the delay, 

the integration domain only includes a small slice of the 

left fl ank of the IRF, hence the integral is dominated by 

contributions originating on the right fl ank of the IRF. 

In this case, exposed and infected individuals propagate 

the disease for an average time greater than the delay.

  = 0 and the overall death rate is small, thus no 

correction for the division by the   2
1 d t   the factor 

is necessary.

 The epidemy is in its starting phase   ~ 1s t .

A formal solution to epidemic equations

Whenever  = 0 the fundamental equation of the 
convolutional model reduces to:

 
     

 
1

2 2
1

e t i tds t
k

s t dt d t

 
 



  
              (16)

Introducing a new function of time p(t) defi ned as the 

primitive of 
   

 
2 2

1

e t i t
k

d t

 



  
  

, and performing simple 

mathematical manipulations a formal solution of the model is 
obtained:

     
 

     

2 2
1

0

e itp t k do
d
p t

s t s e

  





 






   

   



               (17)

Expressing the other classes as a function of p(t) is rather 

complex and is neglected. Let us note that a similar solution 

can be obtained for almost any deterministic epidemic model, 

as for the SIR (Eqs. (18)) whose complete formal solution is 

shown by Eqs. (19):

     
       

   

'

1'

1'

s t k i t s t

i t k i t s t i t
TSIR

r t i t
TSIR

  

  













           (18)

   
     

       

   

0
1

1 0

1

tp t k i do
p t

s t s e

p t
i t s e p t

TSIR

r t p t
TSIR

  





  













   

              (19)

Eqs. (17,19) is the quadrature of the related epidemic 
model but since the function  p(t) remains unknown they do 
not permit us to deduce the epidemy evolution, thus they are 
formal solutions to the related problems. Nonetheless, they can 
be useful to interpret the outcome of simulations discussed in 

the next Sections.

Model implementation

Model implementation has been made by developing 
a custom software code utilizing the C/C++ programming 
language. The systems of coupled integrodifferential equations 
given by Eqs. (2,10,11) have been solved by adopting Euler’s 
method with a discrete time step ∆t far below the least 
standard deviation among the four IRFs of Eqs. (11). Discrete 

time evolution equations are recapped below, where the 

symbol * represents convolution, while the apex stands for 

time derivative.

t n tn                (20)

     
     
     
     
     

1 ' 1

1 ' 1

1 ' 1

1 ' 1

1 ' 1

s n s n s n t

e n e n e n t

i n i n i n t

r n r n r n t

d n d n d n t

     

     

     

     

     









                     (21)
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                 (23)

Results and discussion

Simulations aim at demonstrating specifi c features of the 
convolutional model, comparing its performance to those 
achieved by the SIR model [29], and investigating some aspects 
of the COVID-19 pandemic. Unfortunately, available data for 
this epidemy show signifi cant differences among different 
countries concerning sampling methods and classifi cation of 
deaths, hence comparison between theoretical predictions and 
real data will be made at a qualitative level. All simulations 
have been computed starting the infection at t = 0 with a 

  60 10i t    exposed persons. The SIR model has also been 

solved utilizing Euler’s approach.

Simulation #1

In this simulation, we have investigated an important 
issue of epidemics, i.e., the formation of oscillatory epidemic 
propagation modes that have been reported during the current 
COVID-19 epidemic frequently [32]. We have selected the 
model-free parameters shown in Table 2 where time constants 
(T,) are expressed in days. The value  = 0.8 has been chosen 
to investigate the model's ability to foresee successive epidemic 
waves that are summarized in Figure 2.

Let us note that the new model can reproduce oscillating 
temporal patterns of epidemics, which are forced by the 
high value imposed on the  parameter. However, simulated 
oscillatory patterns always are damped, hence for a large time, 
the model reproduces the quasi-stationary regime dictated by 
Eqs. (13-14) notwithstanding the large  value. The period of 
such oscillations seems to slightly increase with increasing 
time.

Simulation #2

Simulation #2 aims at elucidating the principal difference 
between the standard SIR and the new epidemic convolutional 
model discussed in this work. The parameters of this simulation 
roughly represent the COVID-19 pandemic. The maximum 

incubation period is believed to not exceed 14 days [33-37] 
with an average between 5.1 days [35,36] and 8 days [34], so 
we have chosen 8Te    days and 4e  days. The fatality rate 
has been estimated between 2.2% [35], 3.8% [33], and 5.6% 
[37] (4% in our simulation), while the time between symptom 
onset and death ranged from about 2 weeks to 8 weeks in [33], 
was estimated to be 8 days in [38] and 11 days in [39] 11Tid   

(days and 5id   days in this simulation). A recovery time 

of 2 weeks for patients with mild symptoms (3-6 weeks for 
patients in critical conditions) has been reported in [33], which 

we have condensed with 18Tir    days, 7ir    days. The 

remaining parameters of this simulation were:  = 0 (Tr  and  

r are ineffectual), 12, 415TSIR  days,   2.4830 0R R SIR   

(2.2 in [35], between 2.8 and 3.9 in [36]).

The simulation outputs are summarized in Figures 3, 4, 
and 5. Figure 3 shows the time evolution of classes of both 
the convolutional and the SIR models. Ratios of corresponding 
classes of the two models are plotted versus time in Figure 

4, while Figure 5 depicts the input (  tei ) and output 

(    ,t tir id  ) fl uxes of class i(t), together with the 

dynamic estimate of the Case Fatality Rate (dCFR), which was 
calculated as:

 
   ,

tiddCFR
t tir id



 

              (24)

Let us note that fl uxes (    ,t tir id  ) are proportional 

to the number of outcomes in the corresponding compartments 
within a short time interval, hence it is the dynamic 

Table 2: Value of free parameters in simulation #1.

Te 12.0 σr 30.0

σe 4.0 α 0.9

Tir 7.0 β 0.85

σir 4.0 γ 0.8

Tid 9.0 k 0.3

σid 5.0 ε 0.25

Tr 120.0 R0 2.2584

Figure 2: Simulation #1: Time evolution of classes in the epidemy modeled with 
parameters of Table 2.
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(instantaneous) value of the CFR estimate defi ned as deaths/
(deaths + recovered) that is adopted often [28,37]. We also note 
that the exposed category e(t) rarely is traced precisely, so the 
death rate is often estimated considering the outcomes of the 

infected class only disregarding the fl ux  ter .

Figures 3 and 4 demonstrate that the signals originated by 

the convolutional model are signifi cantly delayed with respect 

to those calculated by the SIR model with the same R0. Due 

to its structure, the convolutional model foresees important 

trouble encountered when facing the Covis-19 epidemy: when 

the disease becomes apparent, i.e.: i(t) assumes non-negligible 

values and patient hospitalization begins to grow, the class 

e(t) already is signifi cantly diffused reducing the possibility 

to restrain the epidemy. Moreover, the convolutional model 

exhibits a signifi cant persistence of i(t) and e(t)signals after 

the epidemy peak that is not found with the SIR. This point 

is evident in Figure 4 where the ratio between the signals e(t) 

and SIR i(t) signifi cantly grows for large t. In other words, 

the convolutional model does not exhibit a sharp epidemy 

stopping, the simulated epidemic wave slowly vanishes away 

after the peak, and a tiny fraction of the population remains 

infectious for a long time.

Figure 5 shows that the  tid fl ux toward the d(t) class 
(dashed line) resulting from simulations is larger in the 
initial phase of the simulated COVID-19 epidemy than near 

its termination when the predominant fl ux  tir    (dotted 
line) is toward the r(t) class. In the epidemic terminating phase 

 tir  is almost one order of magnitude greater than  tid

, while at the beginning the simulated fl uxes are comparable. 
The dCFR plot confi rms this property that has been obtained 
with intrinsically constant mortality of the simulated epidemy. 
From a mathematical standpoint, the apparent reduction of 
infection gravity with increasing time is a direct consequence 

of the circumstance that the healing time Tir  is on average 

greater than the dying time Tid . As a rule of thumb, the 
apparent dynamic recovery rate of class i(t) at time  is 

proportional to  t Tei ir  , while the dynamic death rate 

depends on the input fl ux  t Tei id  . If T Tir id , a greater 

death rate with rarer recoveries will appear near the epidemy 
beginning with respect to its conclusion.

A similar phenomenon has been observed in China where 
“the overall CFR was higher in the early stages of the outbreak” 
[33], and its origin still is debated [28]. Comparisons among 
the case-fatality rates in China, Italy, and other countries 
[40,41] showed a partially unexplained higher mortality of 
the COVID-19 epidemic in Italy. However, the data analyzed 
in [40] were sampled in the initial phase of the epidemic wave 
in Italy and near the top of the epidemy in China. Simulations 
performed with the convolutional model (Figure 5) suggest that 
the disparity of sampling time could imply a large difference in 
the apparent death rate, so the differences revealed by these 
works [28,33,40,41] might refl ect the property  T Tir id rather 
than possible differences in epidemy management or clinical 
response between the countries.

It is worth noting that recent virus epidemics have shown 
time-varying CFRs as reported in [42]. The SARS epidemy in 
2003 was found to have an increasing CFR, lesser in the initial 

Figure 3: Simulation #2: Time evolution of classes in the epidemy simulated with 
the convolutional (solid lines) and the SIR (dashed lines) models.

Figure 4: Simulation #2: Time evolution of new model to SIR model class ratios. 
Solid line: s(t) to SIR s(t) class ratio; dashed line: e(t) to SIR i(t) class ratio; Dot-
dashed line: r(t) to SIR r(t) class ratio; Dotted line: i(t) to SIR i(t) class ratio.

Figure 5: Simulation #2: Fluxes and dynamic CFR vs time for the convolutional 
model. Solid line: fl ux Φei (t) from exposure to infected class; Dashed line: fl ux Φid (t) 
from infected to dead class; Dotted line: fl ux Φir (t) from infected to recovered class; 
Dot-Dashed line: dynamic Case Fatality Ratio (right vertical axis). The left vertical 
axis (fl uxes) is plotted with a logarithmic scale.
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phase of the epidemic wave with respect to its conclusion [43]. 
We point out that the convolutive mathematical modeling 
discussed in this work can predict this characteristic by 
choosing T Tir id , i.e.: a recovering time on average shorter 
than the time to death.

Simulation #3

In this Section, we show the aggregate outcomes of several 
simulations with many combinations of the model-free 
parameters, all with  = 0. We have investigated the criterion 
for epidemy spontaneous stopping and the asymptotic value  
s as a function of 0R .

For both the examined models (convolutional and SIR), it 
was possible to fi nd a clear link between the asymptotic value 
s  and the  0R  imposed on the simulations, as shown in 
Figure 6 and in Eq. (25).

0aR
s Ce




            (25)

Where C and a   are positive constants that assume values 
close to one (best fi t). Figure 6 clearly shows how carefully the 
relationship of Eq. (25) predicts the asymptotic limit  s of the 
susceptible class with a correlation coeffi cient greater than 
0.99.

Substituting into Eq. (25) the limit   lim s t
t  from Eqs. 

(17) it is possible to fi nd a simple relationship between function  
p(t) and R0, as shown in the next equations.
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 
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

  
  

     

                 (26)

It is easy showing that the SIR model closely obeys the 
same equation:

     
lim  ln 0.1820 00

C
p t k i d aR Rot s

      


    (27)

Integrals in Eqs. (26,27) can be considered as a measure of 
the epidemy “strength”, thus these equations show how the 
impact of an epidemy depends on a few parameters such as R0, 
k and s(0)

It is believed that an epidemy does not break out if  R0<1, and 
that it stops when its basic reproduction number falls below 1 
[44]. For the convolutional model, these properties seem untrue, 
and epidemy can survive for years although with vanishing 
rates. This circumstance is depicted in Figure 7, where class 
abundances are plotted versus time for an epidemic simulation 

characterized by R0= 0.946429, 0.16k   , 0.7   , 

0.0  ,  6T T T Te rir id     and 4e rir id      

. As can be seen, the convolutional model foresees a tiny-

amplitude epidemic wave that propagates over years with 

almost vanishing e(t) and i(t) time derivatives, as dictated 

by Eqs. (13,14). This behavior should be ascribed to the delay 
and spreading of the output signals typical of the convolutive 
model: Delay allows e(t) and i(t) to grow even with a small R0 
while spreading prevents their fast zeroing. We note that the 
role of R0 as epidemy stopping threshold seems untrue also for 
different epidemic models containing nonlinear terms [24].

The characteristics discussed above are relevant to 
developing strategies for epidemy mitigation or control.

Conclusions

We have shown the structure of a new epidemic model 
holding fi ve population compartments, which introduces 
the concept of population fl uxes among different classes. 
In the mathematical construction of the model, classes are 
considered time-invariant linear systems that connect the 
input to output fl uxes by the convolution of the input fl ux with 
an IRF. The convolution with the normalized IRF introduces 
delay and spreading in the related class transition that can 
be thought of as a probabilistic temporal evolution of the 
epidemy. This mathematical structure guarantees that people 
leave a given class according to a lifelike temporal scheme 
(the IRF) starting from the time at which the same individuals 
entered the concerned class. The convolutional model does not 

Figure 6: Simulation #3: Asymptotic value of the susceptible class simulated 
for several combinations of free model parameters plotted versus the basic 
reproduction number. The vertical axis has a logarithmic scale.

Figure 7: Simulation #3: Time evolution of the epidemy simulated over a long time 
interval with the convolutional model.
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adopt the unrealistic exponential decay, implicitly accepted by 
most deterministic models to compute the exit rate of a given 
compartment.

The model includes healthy carrier contribution to epidemy 
propagation, the option for recovered people to become newly 
susceptible, several free parameters that govern pathogen 
transmissibility, and time delay and spreading for any class 
transition admitted. The model can be useful to simulate the 
evolution of different types of epidemics and seems to be able 
to predict important features of the COVID-19 pandemic.

The performed analyses pointed out the following 
properties.

1. The convolutional model foresees important trouble 
encountered when facing the Covis-19 epidemy: when 
class i(t) assumes non-negligible values and patient 
hospitalization begins to grow, the class e(t) already 
is signifi cantly diffused, reducing the possibility to 
restrain the epidemy.

2.  Epidemic waves simulated with the convolutive 
modeling are signifi cantly delayed in comparison with 
those calculated by the SIR model.

3.  The convolutional model can predict the formation of 
epidemic oscillatory patterns for simulations in which 
recovered people can become newly susceptible to 
losing their immunization.

4. The new model admits a quasi-stationary regime in 
which the decrease of s(t) is continuously absorbed 
by the restored and deceased classes with vanishing 
derivatives of e(t) and i(t).

5.  The new model allows a tiny epidemic wave to propagate 
for a long time even when 1Rt  .

6. The dynamic fatality rate of COVID-19 deduced from 
simulations performed with the convolutive model 
appears to be greater at epidemy beginning than in 
its stopping phase, a model property that can justify 
measured epidemiological data (behaviors) that recent 
investigations were unable to explain. According to 
the convolutional model, this epidemic property is the 

result of a long average recovering time T Tir id . The 
convolutive model is even able to account for a CFR that 
apparently increases with increasing time, as in the 

case of SARS, a feature that would require the adoption 
of T Tir id .

7. We have defi ned a quadrature function p(t) whose 
asymptotic limit determines the epidemy strength 
(i.e.: its impact on the population) and which roughly 
matches the value  R0 at epidemy beginning. We were 
able to fi nd this quadrature function for both the 
convolutive and the SIR models.

Points 4 and 5 are less important per se, as their effects 

can be quite small from an epidemic point of view, but they 
prove the inexistence of a sharp epidemy stopping option. 
They indeed demonstrate that epidemics like COVID-19 can 
silently propagate over years even involving tiny fractions of 
the population whenever 1Rt  sss, but being able to spring off 
every time the basic reproduction number rise.

The features outlined above should be carefully considered 
when planning strategies for epidemy mitigation or control.
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