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Abstract

As shown in the works [1-3], the asymptotic behavior of the propagator in the Euclidean region of momenta for the model of a complex scalar fi eld  and a real scalar 

fi eld χ with the interaction *g   drastically changes depending on the value of the coupling constant. For small values of the coupling, the propagator of the fi eld  
behaves asymptotically as free, while in the strong-coupling region the propagator in the deep Euclidean region tends to be a constant.

In this paper, the infl uence of the vacuum stability problem of this model on this critical behavior is investigated. It is shown that within the framework of the 
approximations used, the addition of a stabilizing term of type C  to the Lagrangian leads to a renormalization of the mass and does not change the main effect of 
changing the ultraviolet behavior of the propagator.
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Introduction

In this paper, we consider a problem of vacuum stability 
in a model of the N -component complex scalar fi eld  (phion) 
and real scalar matrix fi eld  (chion) with interaction  *g  in 
Euclidean four dimensions. This model is the simplest model 
of the interaction of two fi elds and is often used as a prototype 
of more realistic theories to investigate the non-perturbative 
aspects in the quantum fi eld theory (see, e.g., [4,5] and 
references therein).

The study of this model in the author's works [1-3] shows 
an interesting phenomenon – a change in the asymptotic 
behavior of the phion propagator in the deep Euclidean region 
at a certain critical value of the coupling. For small values 
of the coupling, the propagators behave as free, which is 
consistent with the widespread opinion about the dominance of 
perturbation theory for this super-renormalizable model. But 

the self-consistent solution for the propagator equation exists 
also for the strong coupling, where the asymptotic behavior 
changes dramatically – the phion propagator in the deep 
Euclidean region tends to some constant limits. The existence 
of this critical coupling looks like a specifi c ''phase transition`` 
for this four-dimensional fi eld model.

For a more detailed investigation of this interesting 
phenomenon, it is necessary to study the stability of the 
ground state (vacuum) for this model. As it is well-known, 
since bosonic fi elds may be given arbitrarily large excitations, 
non-positively defi ned terms (type of *  ) in energy with 
such large fi eld excitations will dominate the positive quadratic 
terms and destroy the ground state of such models [6].

As shown in the work of Gross, et al. [7], for this model, 
the problem can be solved by considering approximations 
with a fi nite number of chronic loops (it is to this type of 
approximation that the 1/N - expansion we use belongs). 
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However, the proof of Gross, et al. is true only for the nonzero 
chion mass, whereas the solutions we have obtained for the 
phion propagator essentially exploit the masslessness of the 
phion and, consequently, the problem remains.

Another way to solve the stability problem is to add a 
positive defi nite fourth-order term to the Lagrangian. Of 
course, the question arises about the effect of such an additive 
on the results. The study of such a method of solving the 
problem of stability and the effect of an additive of the type 4  
on the critical behavior of the propagator is the subject of the 
proposed work. To construct the effective action in the leading 
order of 1/N-expansion and the equation for the propagator in 
this model, we use the bilocal source method1.

The main result can be formulated very simply: the 
addition of such a stabilizing term in the leading order of the 
1/N - expansion does not affect the effect of changing the 
asymptotic behavior of the propagator. The reason for this is 
that the addition of a stabilizing interaction to the equation 
for the phion propagator manifests itself only in an additional 
renormalization of the mass. Such renormalization has no 
effect on the asymptotic behavior of the propagator in the 
deep Euclidean region and, consequently, all the consequences 
of such behavior remain valid for the modifi ed model with a 
stable vacuum.

Effe ctive action and phion propagator

The Lagrangian of the model is 

* 2 * 2 *1= ( ) ,
2a a a a ab a b ab

gL m
N

                           (1)

where a,b=1,…,N. The usual agreement on the summation 
of repeated discrete indices is implied. It is convenient to 
construct a 1/N -expansion for this vector-matrix model in 
the formalism of the Schwinger-Dyson equations2 using a 
matrix bilocal source ( , )ba y x  of a complex fi eld a . Generating 
functional G correlation functions (vacuum averages) is a 
functional integral over the fi elds, and the derivative of G  the 
over bilocal source is a two-point function 

*/ ( , )= < ( ) ( )> .ba a bG y x x y   

The translational invariance of the functional integration 
measure leads to Schwinger-Dyson equations for generating 
functional G. Then excluding the chion fi eld and the using 
Bose-symmetry condition, we obtain for generating functional 

= logZ G

the equation 

2 2
1 1

1

( ) ( , ) ( )
( , ) ( , )x aa ab

ba ba

Z Zm dx x x x y
y x y x

   
 



    

2 2

1 1
1 1 1 1

= ( )[ ].
( , ) ( , ) ( , ) ( , )c

ba b b b b ba

g Z Z Zdx D x x
N y x x x x x y x

  
      

    

                  (2)

Here 2=cD  .

To construct the 1/N -expansion of this equation, it is 
convenient to use the Legendre transform of the generating 
function [ ]Z  . Consider the defi nition of a propagator with a 
source   

= ( , | )
( , ) ab

ba

Z x y
y x

 


                         (3)

as a functional equation for = [ ]    and resolving this equation, 
we can defi ne a new generating functional [ ]   (effective 
action) of a new functional variable  : 

1 1 1 1 1 1[ ]= ( , ) ( , ).ab baZ dx dy x y y x                (4)

It follows from this defi nition that / ( , )= ( , | ).ba aby x x y      
Legendre-transformed SDE (2) can be rewritten as: 

2
1 2 2=( ) ( , ) ( ) ( ) ( ) ( , )

( , ) ab ab ab c
ba

gx y m x y D x y tr x y
y x N

   



        



2
11 1

1 1 1 1
1

( , )
( ) ( ) ( , ).

( , )
aa

c a b
b b

x yg dx dy D x x y y
N x x







 


  

               (5)

(In this equation /   should be expressed as a function 
of ∆).

It can be shown (see [3]) that the last term of equation (5) 
has a higher order 1/N and the leading approximation equation 
for generating functional  is 

2
1 2 20 =( ) ( , ) ( ) ( ) ( ) ( , ).

( , ) ab ab ab c
ba

gx y m x y D x y tr x y
y x N


  




       


 

                 (6)

Correspondingly, the leading-order equation for the phion 
propagator 2( )= ( )ab abp p   in the momentum space is 

4 2
1 2 2 2 2

4 2

( )( )= .
(2 ) ( )

d q qp m p g
p q

 
  

                (7)

To renormalize this equation one should add counter-
terms of renormalization of the phion mass m2 and the phion-
fi eld renormalization z. We shall use the normalization at zero 
momentum 

1
1 2

22 =0
(0)= , | =1.

p

dm
dp


 

               (8)

Here and below ∆ and m are the renormalized quantities.

The renormalized equation for the phion propagator 
becomes 

1 2 2 2 2( )= ( ),rp m p p                   (9)

1A formalism of multilocal sources was elaborated in the framework of quantum statistics by De Dominisis and Martin [8] and elaborated in quantum field theory in works [9-11] (see also [12] for the modern applications).2See also [3] for details.
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where 2 2 2( )= ( ) (0) (0)r p p p        and 

4 2
2 2

4 2

( )( )= .
(2 ) ( )

d q qp g
p q


 
                 (10)

After the angle integration we obtain for the phion 
propagator the integral equation: 

22
1 2 2 2 2 2 2

20
( )= (1 ) 2 ( )(1 ) ,

p qp m p m q dq
p

                   (11)

where 

2

2 232
g

m



                   (12)

is dimensionless coupling.

This integral equation can be reduced to the non-linear 
differential equation 

2
2 1 2 2 2

2 2
( ( ))=2(1 ) 2 ( ).

( )
d p p m p

dp
                              (13)

Depending on the value k, three different types of positive 
solutions3 are possible.

In the weak-coupling region, k<1 the asymptotic solution 
at large p2 is 

1 2( )=(1 ) .p p                  (14)

This asymptotic solution is positive k<1 and corresponds to 
the asymptotically-free behavior of the propagator.

At critical coupling k=1 the propagator at large momenta is 

2

1 3= .
8cr m p

               (15)

and drastically differs from the asymptotically-free behavior 
in the weak-coupling region.

At k>1 differential equation (13) has the positive exact 
solution 

2

1 1= .s m




               (16)

It can be proven (see [2]) that ∆s is the asymptotic solution 
of the integral equation (11) at 2p  .

A change of asymptotic behavior in the vicinity of the 
critical value of coupling is similar to the re-arrangement of 
a physical vacuum in the strong external fi eld. This ''fall on 
the center`` is related to the term 1/r2 in a potential (see [13] 
and references therein). The potential U, which corresponds to 
the propagator, is defi ned as the response to a static source 

3( )= ( )j x x : 

2

1 1 12
( ) ( ) ( ),M

gU r dx x x j x
m

                  (17)

Where ∆M is the propagator in pseudoeuclidean Minkowski 
space (see, e.g., [14])? At critical value k=1 for propagator (15), 
we obtain 

2

1 1( ) .U r
m r

                  (18)

It is really a potential of ``fall on the center''. Despite all the 
obvious limitations of this analogy, it undoubtedly indicates 
the related nature of these phenomena.

The phion propagator in the strong-coupling region 
asymptotically approaches a constant. It is not something 
unexpected if we remember the well-known conception of 
the static ultra-local approximation, or ''static ultralocal 
model``, which can be considered as a starting point for the 
strong-coupling expansion (see [15] and references therein). 
In contrast to the ultra-local approximation, our solution has 
the standard pole behavior for the small momenta.

Stabilization

As noted above, the scalar  fi eld model we are considering 
does not have a stable ground state and therefore cannot serve 
as a basis for realistic physical models of particle interactions. 
The reason why there is no ground state is as follows: bosonic 
fi elds can experience arbitrarily large excitations, and a non-
positive cubic term in energy with such large fi eld excitations 
will dominate the positive quadratic terms [6].

As shown in the work of Gross, et al. [7], the situation 
can be corrected if we restrict ourselves to an approximation 
containing a fi nite number of phionic loops (of course, the 
1-N-expansion is such an approximation). The theory is stable 
if the Fock space of all intermediate states is bounded by a fi nite 
number of phion loops. However, the proof of this fact in the 
work [7] is essentially based on the massiveness of the chion 
fi eld, while all the results we obtained for the phion propagator 
are essentially based on the masslessness of the chion. In this 
regard, the problem of the stability of the ground state in this 
model becomes relevant again.

We show that it is possible to modify the model under 
consideration corresponding to a stable vacuum and including, 
on the other hand, all the above effects associated with a change 
in the asymptotic behavior of the phion propagator.

As is known (see [6]), the presence of positive defi nite 
structures of the fourth degree in the Lagrangian, such as 

4  with an arbitrarily small positive coupling constant   
guarantees the existence of the ground state. We shall prove 
that adding the such stabilizing term 

* 2( )a aN
                  (19)

to the original Lagrangian (1) does not affect the main effect 
– the change of asymptotic behavior of the phion propagator. 
Really, adding this term to the Lagrangian leads to a 
modifi cation of the equations (2), (5) and (6) by replacing 

2 2( ) ( ) ( ).c cg D x y g D x y x y               (20)
3Non-positive solutions necessarily contain Landau singularities and are therefore physically unacceptable.
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Consequently, an additional term 2= ( )
2

Tr
N


    will 

appear in the expression for effective action and a corresponding 
positively-defi nite stabilizing additive will appear in the 
vacuum energy density.

At the same time, the non-renormalized equation for the 
phion propagator will differ from what we have studied only 
by replacing 

2 2
0| ,xm m    

i.e., by redefi nition of the counter-term of mass 
renormalization. Such redefi nition leads to the same 
renormalized equations (9) – (11) and it will have no effect on 
the results of the investigation of the phion propagator. Hence 
all conclusions remain in full force.

Conclusion

The obtained result shows that the phe nomenon of 
changing asymptotic behavior does not contradict the existence 
of a stable ground state of strongly interacting boson fi elds.

This critical phenomenon is a quantum-fi eld analog of the 
re-arrangement of the physical vacuum in a strong external 
fi eld. Further study of similar phenomena in more realistic 
models of strongly interacting bosons (including glue) is of 
undoubted interest.
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