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Abstract

The paper will present a new version of a real discrete Fourier transform, based on a symmetric frequencies combination of sine and cosine functions. Basic aspects of the 
construction as well as the potential applications will be discussed. This will include elements of the standard Fourier analysis as well as applications to the class of differential 
equations in string theory.
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Introduction

A Fourier transform, FT [1,2] is a simple and interesting 
tool. Over the years, it has found applications in many fi elds. 
The simplicity and power of the transform lie in the ability 
to decompose an input expression into a series of periodic 
C  functions. The standard continuous FT can be defi ned as 
follows: 

 ( ) = ( ) ,ikxx t dk x k e               (1)

( )= ( ) .ikxx k dx x t e                (2)

Here x(t) is a function to be transformed, while ( )x k  the 
function transforms, the complex Fourier coeffi cients. The 
equations above present a one-dimensional version of the 
transform. Generalization to arbitrary dimensions is trivial. In 
eq. (1) a non-standard convention was adopted, skipping 2π 
coeffi cients by taking the following form of the Dirac Delta 
function 

( ):= .ikxx dke
 

               (3)

The Fourier transform plays an essential role in the signal 
analysis [3,4]. For instance, it can be used to determine a 
constituent pitch in a musical waveform. The constituent 
frequencies will are represented by non-zero transform 

coeffi cients ( )x k . Having specifi ed the transform, the original 
signal can be easily reproduced using eq. (1).

Decomposition into a series of differentiable functions is 
also useful in solving differential equations of various types 
and the transform could provide a convenient ansatz for the 
solution. Consider the relativistic Klein-Gordon equation [5,6]: 

  2 ( ) = ,m x o              (4)

where = =1c  and = ,x t x


. It is easy to check that the 
equation above is satisfi ed by a four-dimensional version of 
the transform (1) 

4( )= ( ) ,ipxx d pa p e                (5)

leading to the mass-shell constraint for the four-
momentum p : 

2 2= .p m                (6)

In general, the solution to (4) can be expressed as a 
combination of e-ipx and eipx. This is a starting point for 
constructing a scalar fi eld in quantum fi eld theory [6].

Eq. (4) illustrates the main advantages of taking a 
combination of the exponential function. Being the simplest 
one from a differential point of view, it is infi nitely many 
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times differentiable. Hence, it provides a useful ansatz for the 
solution. This remains partially true even for more complicated 
equations, where some further modifi cations of sine and 
cosine terms may be required. In particular, in [7] it was shown 
that certain combinations of sine functions provide an ansatz 
for numerical solutions of a class of differential equations in 
quantum cosmology.

The discrete equivalent of the form (1), discrete Fourier 
transform DFT, also called as fast Fourier transform (FFT), 
reads 

1

=0

2= exp
T

t n
n

intx c
T
  

 
 

                (7)

1

=0

1 2= exp ,
T

n t
t

intc x
T T

  
 
 

               (8)

Where t = 0,…,T-1 ; T is the number of the discrete label 
parametrizing xt.

The discrete transform is given by eqs. (7)-(8) is a direct 
equivalent of the continuous form (1)-(2) in the sense that 
in both cases the original quantity was expressed as a sum of 
oscillating functions multiplied by some coeffi cients. In the 
case of DTF, this is an ordinary fi nite sum. In the case of FT, 
the sum is replaced by the integral. There is also an additional 
multiplier 1/T in eq. (8), ensuring a good normalization of 
the transform1. A discrete transform is a convenient tool in 
numerical analysis based on a fi nite discrete number of steps 
and samples.

Despite the complex DFT being a powerful tool, in some 
cases one could be interested in even further improvement, 
constructing a real discrete Fourier transform. Such a 
transformation could be a preferred choice when the problem is 
real. In this paper it will be shown making the transformation 
real and modifying it, leads to the simplifi cation of many 
problems.

The main goal of this paper will be to provide a new version 
of discrete real Fourier transformation, constructed in such a 
way that is real, it shares some features of the complex DFT. 
What these features are and why they are so important will be 
analyzed in more depth, based on specifi c examples.

The plan of the paper is the following.

Section 1 is the introduction, presenting basic aspects and 
applications of the Fourier transform.

In section 2 a class of optimization problems will be 
discussed, focusing on certain types of constraints. It will be 
shown that the standard discrete transform simplifi es the 
form, however, increasing the number of variables. A symmetry 
simplifying the problem will be identifi ed and a new version of 
the real Fourier transform will be suggested.

In section 3 the new version of the discrete Fourier 
transform will be constructed. The basic properties as well as 
alternative formulation will be discussed.

In section 4 the derived formulas will be verifi ed, fi nding 
concrete applications in data analysis and a certain class of 
differential equations in string theory.

Section 5 will summarize the results.

Towards a mod ifi ed version of DFT

Consider another example, a class of linear optimization 
problem (LP) in the form 

( , ,...)t tmin f x y

1( , ,...) = ,t tconstr x y o

2( , ,...) = ,...t tconstr x y o                (9)

Where f stands for a linear combination of discrete 
variables xt, yt, possibly with some parameters, labeled by 

index {0,..., 1}t T  . The problem (9) is to fi nd a minimum 

of the form f, satisfying the constraints constr1, constr2,... By 
assumption, all the variables and parameters will be real. For 
the sake of convenience, t the label will be associated with time.

Suppose that one of the constraints takes the form 

1 = ,t t tx x x                    (10)

Where ∆xt is another real variable. Consider the Fourier 
transform of the constraint (10). Using (7), one fi nds 

  
      

 


1
2 /

=0

2exp = ,
T

in T
n n n

t

inc e c c o
T

            (11)

Where cn and ∆cn are DFT Fourier transforms of xt and ∆xt. 
Eq. (11) implies 

2 /( 1)= .in T
n nc e c                 (12)

Note that the formula above is non-recursive, while the 
original one, given by eq (10) is recursive. In the case of eq. 
(10) to get the constraint in the next moment of time, the 
previous one is required. On the other hand, in the case of eq. 
(12) there are no such correlations. This makes a signifi cant 
simplifi cation of the problem. If all the constraints were of this 
form, problem (9) could easily be decomposed into smaller 
sub-problems.

The source of the simplifi cation is the response of the 
exponential function: 

 
      

 

2exp .n n

in tt t t c c
T

             (13)

However, the fact that one or more of the constraints take a 
simpler form does not mean the problem (9) will be simpler. If 
it is real, the Fourier transform will introduce complex variables 
and possibly complex parameters (if transforming the whole 
of the original problem). In particular, cn, ∆cn are complex, 
while the original variables, xt and ∆xt are real. This doubles 

1Substituting Cn given by eq. (8) into eq. (7) and performing summations one 
fi nds the identity xt = xt. Similarly, for continuous FT substituting χ(k) given by eq. 
(2) into eq. (1) results in an analogous identity x (t) = x (t). For FT the inverse 
transformation does not require any extra coeffi  cient, while for the discrete 
transform 1/T coeffi  cient is needed.
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the number of variables after transformation because cn, ∆cn 
will contain real and imaginary parts2. In what follows, the 
number of variables will be doubled in the Fourier formulation 
of the problem. The complex DFT provides an interesting 
simplifi cation of the form of some relations, however, the 
price would be a greater number of variables (unknowns) in 
the corresponding complex formulation.

A way out is to consider a real transformation, a real 
equivalent of complex DFT. This would eliminate complex 
variables right from the beginning. The idea of real discrete 
Fourier transform (RDTF) is not new and has been already 
discussed. In particular, the following [2] defi nes 

1

=0 = 1

2 2= cos sin
N T

t n n
n n N

n t n tx c c
T T
 



   
   

   
              (14)




 


1 , if T is even
2:=

1 ( 1), if T is odd
2

T
N

T
              (15)

The inverse transform specifying the remaining coeffi cients 
cn has also a simple form given explicitly in [2]. The problem is, 
the transform (14) has a much worse response. In particular, 
applying (14) to the constraint (10) no simplifi cation will be 
obtained. Instead, a far more complicated formula will get in 
the result.

Fortunately, there is another option: modifi cation of the 
real transform. It would be interesting to construct it in such a 
way that some aspects of the symmetry (13) will still be present. 
In what follows, the main requirement for the construction will 
be to simplify the constraint (10).

Consider a family of transforms, given by a general linear 
transformation Lt

n: 

= .n
t t nx L c               (16)

Keeping in mind eq. (13), the following symmetry is 
required: 

= = .n n t
t t t t n t nx L c L c
              (17)

Translation in time (13) is refl ected by new values of the 
coeffi cients cn

∆t. However, it does not affect the transformation 
matrix Lt

n. For this reason, the transform Lt
n will be called 

translationally invariant. The standard DFT is an example of such 
an invariant transform, while (14) is not. It is straightforward 
to check that the transform given by eqs. (16)-(17) simplifi es 
the constraint (10), making it non-recursive.

Real transform

A. Translati onally invariant  real Fourier transform: The 
real Fourier transform satisfying eq. (17) can be constructed 
starting with the following combination of sine and cosine 
functions: 

1 1

=0 =1

= cos sin ,
N N

t n n
n n

n t n tx a b
N N
     

   
   

             (18)

where {0,..., 1}t T   and N  is an additional parameter of 
the transform, the analog of N in (15). In contrast to eq. (15), 
it will be not fi xed. Note that we will get the exact result only 
if N > T/2. Otherwise the number of transform parameters, the 
coeffi cients an, bn, will be smaller than the number of xt.

The transform is symmetric in frequencies in the sense that 
sine and cosine functions are defi ned on the same set of discrete 
frequencies (there is no bo term, however, because sin(0) = 0). It 
is easy to check that the form (18) is translationally invariant 
in the sense of eq. (17). Hence, it will simplify eq. (10) making 
it non-recursive.

Compared with the standard DFT or (14) the base 
frequency of the transform is two times smaller, i.e. instead 

of  sin/ cos 2 /n t N  we get  sin/ cos /n t N . This is to avoid 

some peculiar periodicities t3. On the other hand, this reduction 
makes construction harder. For example, one fi nds the 
following relation: 

1

=0

2 2 2 2cos cos sin sin =
N

nm
k

n k m k n k m k N
N N N N
    

         
        

        
    (19)

Where nm is the Kronecker delta. On the other hand, 
lowering the frequency one fi nds 

1

=0

cos cos sin sin =
N

k

n k m k n k m k
N N N N
            

        
        



11= (1 )(1 ( 1) ).
2

n m
nm nmN                   (20)

To get the inverse transform of eq. (18), i.e. to fi nd the 
Fourier coeffi cients in eq. (18) one can use the more complicated 
relation (20), combining it with some rotations. This results in 
the following Fourier coeffi cients 

   
1 1

, =0 , =0

= cos , = sin ,
T T

n tt t N n tt t N
t t t t

a x n t b x n t 
 

   
 

               (21)

1
11( )= , =(1 )(1 ( 1) ),

2
t t

tt tt tt tt ttN   


 
    

 
     

 
        (22)

 and 

:= .N N
             (23)

Note that the last equations are much more complicated 

than the corresponding formulas for DFT and RDFT. This 

may cause some further limitations in practical applications. 

It will be shown later in the paper that, at least for some 

applications, this is not a problem. Also note, that the response 

of the transform is still worse than the complex DFT. This is 

something that cannot be overcome by constructing a real 

transform.

As mentioned, N is a transformation parameter. It specifi es 
 2The standard formulation of LP is real and standard libraries for solving them numeri-
cally, like e.g. GLPK or Gurobi, are operating on real variables. Dealing with composite 
variables it is necessary to isolate and treat separately real and imaginary part of the 
problem, requiring that all of the imaginary parts be equal to zero.

3Without lowering the frequency, for N greater than T/2 it could happen the 
transform will fi x 

1 2
=t tx x  for some moments t1, t2.
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the number of transform coeffi cients. If the number is 

smaller than the number of moments of time T, i.e. N < T/2, 

there is no chance to reproduce the exact result from the 

transform4. In such a case the transform will provide a non-
linear approximation, resulting in some internal additional 
periodicities. The smallest N, the worse the precision. If N < T/2 
the number of transform coeffi cients and so sine and cosine 
terms, will be greater than the number required to reproduce 
the original data. The transform will reproduce the correct 
result, however, it will contain more coeffi cients than required. 
Consideration of such parameter values may seem pointless. 
In the case of application to LP, this would artifi cially increase 
the number of variables. Still, keeping N to be an arbitrary 
parameter would be better from a conceptual point of view. 
Presenting the new form of the transform, one makes it as 
general as possible.

Let N0 = N stands for the boundary value, corresponding to 
the minimum number of coeffi cients necessary to reproduce 
the exact result. Using the simple relation for the number of 
Fourier coeffi cients 2N0 - 1 = T (there are N0 cosine coeffi cients 
an and N0 - 1 sine coeffi cients bn), one fi nds: 





 


0

1 1, if T is even
2:=

1 ( 1), if T is odd
2

T
N

T
             (24)

Note that if T is even, the number of transform coeffi cients 
will be one more than the number of moments of time T. 
Clearly, one more transform coeffi cient is not much compared 
to complex DFT which, when applied to a real LP problem, 
doubles the number of variables. The case N = N0 is of special 
importance and will be called ``boundary''. As mentioned, if N 
< N0 the transform is not exact, if N > N0 it contains more sine 
and cosine terms then is needed to reproduce the exact result.

The case N = T/2 (assuming T is even) is also special because 

of the matrix 1
2tt ttN    in eq. (22) has zero determinant. The 

Fourier coeffi cients (21) are ill-defi ned and one should require 
N ≠ T/2. However, this does not concern the boundary case (24).

B. Alternative formulation: Compared to ( 14), the transform 
(18) can be re-expressed in a more compact way, defi ning a 
single set of coeffi cients: 

 


  1

, if <
:=

,
n

n
n N

a n N
c

b n N
             (25)

2 2

=0

= cos ( ) ( 1) ,
2

N

t n N
n

x c n t n N N t   
   

     
  

          (26)

Where  stands for a Heaviside function, defi ned as follows 







1 : if 
( ) :=

: < .
x o

x
o x o

            (27)

The above formulation is closer to the one adopted in [2] 
and can be more convenient in applications.

Applications

Having found a new form of t he transform, this chapter 
will present examples of its applications. The fi rst will involve 
fi nding the transform of a particular signal and investigating 
an approximation based on incomplete transformation. In the 
second case, the transform will be used to construct an ansatz 
for a class of nonlinear differential equations in string theory.

Data analysis 

The goal will be now to ve rify eqs. (18) and (21) fi nd the 
Fourier transform of an example signal and then reproduce 
the signal from the transform. Doing this some of the Fourier 
coeffi cients will be intensionally skipped. This is to examine 
the nonlinear approximation provided by the transformation.

As a signal, consider an example solar capacity factor. The 
capacity factor is a time-dependent, dimensionless ratio of 
electrical energy output from a solar panel. Let t stands for 
hours in a year and let Et will be the corresponding energy. By 
defi nition 

= ,PV
t tE P I                  (28)

where P is the nominal power of the solar panel, while It
PV 

is the capacity factor. An example capacity factor will be used, 
taking into account the whole year with hourly resolution; a 
series containing 8760 terms.

The results of the boundary version of the transform 
were depicted in Figure 1. Although eqs. (21)-(22) are more 
complicated than in the case of the standard RDFT or DFT, the 
capacity factor was transformed with ease. 

Two cases have been analyzed. In both of them, the Fourier 
transform (18) of the capacity factor was initially found. In the 
next step 5% and 85% of the smallest in amplitude Fourier 
coeffi cients were skipped, respectively.

Neglecting only 5% the required transform parameters 
leads to a fairly good result. On the other hand, skipping 
85% them leads to high discrepancies. Still, some basic 
elements of the initial shape are still visible. The more Fourier 
coeffi cients, the better the approximation. This agrees with the 
expectations, providing numerical proof of the formulas (18) 
and (21). Keeping 100% the Fourier coeffi cients would lead to 
the perfect match of blue and orange lines.

Applications to differential equations: An other example of 
the use of the transform (18) will be solving a class of differential 
equations in string theory. More specifi cally, equations 
based on the application of the Ryu-Takayanagi formula for 
entanglement entropy within AdS/CFT correspondence will be 
discussed.

Ryu-Takayanegi formula: AdS/CFT correspond ence [8,9] 
is a practical realization of the holohraphic principle [10], 
stating that a non-gravitational quantum system has a dual, 
gravitational description in higher dimensional spacetime. In 
the case of type IIB superstring theory, this leads to an effective 
relationship between states of strongly coupled, conformal 

4Reproducing the result means calculating the transform coeffi  cients (21)-(22) for a 
fi xed N and then using eq. (18) to reproduce the original xt.
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Yang-Mills theory and classical gravity. From a practical 
point of view, this means that some aspects of the quantum 
system can be extracted from Einstein's equations in higher 
dimensional spacetime.

The Ruy-Takayanagi formula [11] is a holographic 
description of the quantum entanglement of two systems: a 
given quantum system and its complement, separated by some 
boundary. In the holographic description, the boundary can be 
viewed as extended to a higher dimensional space; a surface in 
the bulk. This surface is defi ned to be anchored at the boundary 
of the higher-dimensional space in such a way, that it coincides 
with the separation. It is also required for the surface to be 
minimal. The entanglement entropy between a spatial region V 
and its complement (V) is given by [12]: 

1

2= [ ( )]ent
V v Vd

P

S ext A v
l

              (29)

where the extremization is over all surfaces v in the spacetime 
bulk, homologous to the boundary region V , and lp is a Planck 
constant.

Consider a spherical region of a radius R  and adopt Poincare 
coordinate system in the bulk (t, xd-1, z) which d  stands for 
the dimension of the boundary [12]. In the dual holographic 
description, thermal states in the region are represented by a 
black brane in the bulk. As shown in [12], eq. (29) leads to the 
following form of the surface: 

1 2 2

21 10

( )=2 1 ,
( )

d dR

dd d
P

L r z rS dr
f zl z


 

 


               (30)

where 

( )=1 ,
d

d
H

zf z
z

                  (31)

zH- event horizon of the brane in Poincare coordinates, 
Ωd-2 - an area of the unit d-2 sphere. In (30) z(r) stands for 
geodesics determining the minimal surface: a d+1 coordinate 
being a function of the boundary spherical coordinate r  [0,R]

(see [12] for more details). The horizon zH is related to the 
Hawking temperature T via: 

= .
4 H

dT
z

               (32)

In the case of pure anti-de-Sitter space Hz   and the 
temperature goes to zero (in the sense, we have vacuum AdS). 
Eq. (31) simplifi es, and the minimal surface is specifi ed by a 
simple geodesic: 

2 2( )= .z r R r                 (33)

This is an analytical result, independent of the dimension d.

On the other hand, if the temperature is non-zero, the 
equations are much more complicated and cannot be solved 
analytically. Extremizing (30), i.e. applying Euler-Lagrange 
equations 

=0,d dS dS
dr dz dz




              (34)

one fi nds 

2 2 2 2 32( 1) ( 1) (( 2) 4( 1)) 2 (( 2)d d d d
H H Hd rz z rz z d z d z z d z          

1 2( 2) ) 2 (( 2) ) 2( 1) =0.d d d
Hd z rz z z d z rz d rz                (35)

This should be supplemented by the following boundary 
conditions 

=| =0,r Rz               (36)

=0| =0,rz                  (37)

refl ecting the meaning of the spherical separating surface.

Spectral nonlinear method: The equation (35) can be solv ed 
numerically using a variant of the spectral method [13,14] 
and the ansatz provided by the real transform (18). Rewrite 
symbolically the equation (35) as 

Figure 1: Solar capacity factor from real Fourier transform (boundary case). Approximations based on 95% and 15% of required coeffi  cients. The original function is represented by blue 
lines, the orange is for Fourier (approximate) transforms. The plots show only a fragment of the entire annual period.
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= ,oz o               (38)

where the operator 0 is defi ned compared with eq. (35). 
Consider the following ansatz: 

1 1
2 2

=0 =1

( )= cos( / ) sin( / )
N N

N N
n n

z r R r n r R n r R 
  

  
 
          (39)

Where ωN is given by eq. (23). The factor 2 2R r  is because 
in the limit T → 0 it is expected to reproduce the solution (33). 
The radius R was incorporated into the arguments of sine 
and cosine functions to make them dimensionless (r is of the 
dimension of length). Despite these modifi cations, eq. (39) can 
still be regarded as a Fourier series of the form (18).

The boundary condition eq. (36) is trivially satisfi ed by 
the transform (39). The condition (37) leads to the following 
constraint 




1

=1

= .
N

n
n

nb o                (40)

Eq. (38) can be now solved numerically requiring it is 
satisfi ed for a given, fi nite set of points rk  [0,R], k = 0,…,2N -1 
(the transform (39) has 2N - 1 parameters). A convenient choice 
for this point is Chebyshev's nodes [13,14]. Adopting this choice 
improves numerical precision [13,14]. The problem of fi nding 
the Fourier coeffi cients in the ansatz (39) can be expressed 
as an optimization problem, in which the following form is 
minimized 

2[ ( )]:= ( ( )) ,k
rk

Q z r O z r                  (41)

together with the boundary condition (40) and the additional 
supplementary constraints: 

( ) 0.kz r                   (42)

The last is important because otherwise z could be negative5 
The result of the procedure is the values of an and bn. The 
strategy resembles the standard spectral methods [13,14]. 
There are two crucial differences, however. First, optimization 
was used instead of eigenproblem. Second, both cosine and 
sine functions are present in the ansatz, in the combination 
specifi ed by the transform (18).

Nonlinear optimization can be performed in Mathematica 
for various temperatures and various d. Below are presented 

solutions for d = 2 and d = 4, letting N = 5. The latter was 
intensionally made small. The boundary version of the 
transform was adopted in the sense that the number of 
Chebyshev's nodes matches the number of Fourier coeffi cients. 

Depending on the temperature, the resulting precision 
given by the square root of the form (41) is about 10-4 - 10-7. 
With a small N, it is a very good precision. This means that the 
transform provides a very good ansatz. The purple line T = 0 

matches perfectly the curve 2= 1z r , expected for the pure 

AdS case with zero temperature. As the temperature increases, 
the boundary value z(r = 0) decreases and the geodesic becomes 
increasingly different from the case T = 0. This is something 
that can be expected from a physical point of view.

For a given d and T increasing N does not affect the shape 
of the curve. The only change is the bigger number of Fourier 
coeffi cients an , bn. In general, both of them are non-zero and 
so both sine and cosine terms are present in the result6. This 
indirectly supports the idea of considering the combination of 
cosine and sine functions in the ansatz.

Having found the geodesics z(r), one may use it to calculate 
the corresponding entanglement entropy given by eq. (29). In 
particular, one can examine, how it changes with temperature 
and spacetime dimension. However, this will not be discussed 
in this paper. In fact, the Ryu-Takayanagi formula was used 
to provide an interesting example of the highly-nonlinear 
differential equation. The equation has been solved numerically 
in a new way, based on a modifi ed spectral method and a new, 
modifi ed real Fourier transform.

Summary

The paper presents a new version of a real discrete Fou rier 
transform, based on symmetric frequencies combination (14). 
The motivation was to make the real transformation as much 
similar to the complex DFT as possible. Taking a closer look 
at the example constraint (10), a criterion of translational 
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Figure 2: Geodesic Z(r) determining minimal surface for various temperatures: d = 2 (left), d = 4 (right).

6The only exception is T = O case, represented by ao ≈ 1 and very small ai , bi, I ≥ 1. 
However, this is expected at the boundary (pure AdS)

5Restricting to the positive N  one restricts to the part of the whole extended anti-
de Sitter space.
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invariance has been identifi ed. It was shown, that using 
translationally invariant real discrete transform, a class of LP 
problems can be signifi cantly simplifi ed.

The invariant transform was constructed by postulating its 
form and fi nding the corresponding Fourier coeffi cients. The 
transform was examined numerically by calculating the Fourier 
transform of an example capacity factor. Having specifi ed the 
coeffi cients in the Fourier expansion, the input capacity factor 
was reproduced using the transform. In the reproduction 
procedure, some of the Fourier terms were intensionally 
omitted, allowing to test of nonlinear approximation based 
on the transformation. A good result was obtained for fi ve 
percent compression. Decreasing the number of terms (Fourier 
frequencies) the result starts to get worse, however, even at 
eighty-fi ve percent of frequencies removed it still resembles 
the input curve.

The second application of the transform was solving a class 
of differential equations, originated by the Ryu-Takayanagi 
formula for holographic entanglement entropy. A modifi ed, 
nonlinear spectral method has been proposed. In this method, 
the problem of solving differential equations is replaced by a 
nonlinear optimization problem with the ansatz provided by 
translationally invariant real Fourier transform. Applying to the 
thermal states separated by a spherical region, the method was 
used to fi nd numerically the geodesics specifying the minimal 
area in the entropy form (29). In solving the corresponding 
differential equation, a high precision was achieved despite 
a relatively small number of Fourier terms. The boundary 
case of zero temperature (pure ani-de-Sitter space) has been 
successfully reproduced. Both sine and cosine terms were 
present in the solution. The latter shows that the modifi ed real 
discrete Fourier transform provides a much better ansatz than 
the standard combination of cosine functions.

In summary, the main conclusion of the paper was 
the construction of a new form of the real discrete Fourier 
transform and the identifi cation of its potential applications. 
The transform has been tested on simple and more complicated 
examples. The analysis can be generalized in several different 
ways. For instance, one can examine applications of the 
proposed spectral method to a wider class of differential 
equations, or calculate the entanglement entropy in the limit 
of high temperatures. The real transform also opens the door 
for the application of Fourier transform to linear programming 

(LP). In particular, it was shown, that a certain class of the 
constraints of the form (10) can be simplifi ed using complex 
DFT. However, this transform doubles the number of variables. 
The standard real RDFT [2] makes the problem more diffi cult. 
The new version of the transform is free of these restrictions. 
The only limitation is that the formulas for Fourier coeffi cients 
are more complicated than in the standard DFT and RDFT, 
causing potential diffi culties and numerical errors. However, 
this is not a problem for applications to linear programming 
or differential equations. In the case of data analysis, it was 
shown that a yearly series with hourly resolution can be easily 
transformed and the transform perfectly reproduces the input 
data.
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