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Abstract

An interesting practical problem is the single-track train scheduling problem which can be considered a job shop scheduling problem, namely since the sequence of 
sections is fi xed for a train route, it corresponds to fi xed machine routes (technological orders) in a job shop scheduling problem. However, for a train scheduling problem, 
typically some additional constraints such as blocking, sidings, stations with parallel tracks, deadlocks, train length, or headways, etc. have to be considered. The job shop 
problem has been well investigated in the literature and belongs to the hardest problems in scheduling theory. In this mini-review, some results in this area are discussed, 
where the main focus is on results that the author has obtained with his collaborators and Ph.D. students during the last decade.
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Introduction

The single-track train scheduling problem can be 
formulated as follows. A set of n trains with fi xed routes 
through particular sections from the origin to the destination 
has to be scheduled. Trains can be considered jobs and the m 
single tracks can be interpreted as machines. A train passing 
through a section or equivalently, a job being processed on 
a machine, is called an operation. In particular, operation Oij 
denotes the j th section in the route of the train i with a given 
travel time pij > 0 (or equivalently, the processing time of the 
j -th operation of the job i). Therefore, it is natural to solve 
the single-track scheduling problem as a job shop scheduling 
problem which has widely been investigated in the literature. 
Note that for a train scheduling problem, we have usually n m  
while for machine scheduling problems, one has usually n m

. However, for train scheduling problems, in practice, further 
conditions such as e.g. parallel tracks at sidings or stations as 
well as deadlock constraints have to be included. If parallel 
tracks at sidings or stations are considered, the underlying 

basic problem is a fl exible job shop problem, where several 
parallel machines can process certain operations. 

Typical optimization criteria for train schedules are based 
on the arrival times Ci of the train i,i {1,…,n}, at the destination 
(or equivalently the completion time of a job). While in 
scheduling problems, often the maximum completion time 


= { }max

=1, ,
C Cmax ii n

should be minimized, for train schedules, frequent sum 
criteria are considered, e.g. the sum of the transit times of the 
trains ∑Ci or if due dates di are given (i.e., the desired arrival 
times of the trains at the destination), total tardiness 

  


max{ ,0}
1

n
T C d

i i ii

should be minimized. In contrast to the makespan criterion, 
these sum criteria consider explicitly the arrival times of all 
trains. In addition, for train scheduling problems, a release 
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date ri is often given for each train i, which corresponds to the 
earliest time when the train can start from the origin.

Solution approaches

Szpigel [1] was the fi rst who formulated a single-track 
train scheduling problem as a job shop scheduling problem. 
He developed a branch and bound algorithm which was tested 
on instances with 10 trains and 5 single-track sections for 
the minimization of the weighted transit times of the trains 
(∑wici), where wi is the weight for the train i. The fi rst survey 
on optimization models for train schedules has been given by 
Cordeau, et al. [2]. Later, a broad overview of different problem 
structures and solution approaches for the period until 2010 
has been given e.g. by Lusby, et al. [3].

Sotskov and Gholami [4] applied the well-known shifting 
bottleneck procedure from job shop scheduling to a single-
track train scheduling problem with minimizing total weighted 
tardiness ∑wiTi. Due to the unary NP-hardness of the resulting 
single-machine problems in the shifting bottleneck approach, 
these problems are heuristically solved in each iteration. The 
algorithm has been tested on small instances and it turned 
out that the computational times strongly increase with the 
problem size.

Gholami, et al. [5] considered the single-track train 
scheduling problem with given release dates using a mixed 
graph approach. They used several optimization criteria: the 
minimization of the makespan (Cmax), the minimization of the 
sum of the train transit times (∑Ci), and the minimization of 
total tardiness (∑Ti). Due to the NP-hardness of these problems, 
several constructive heuristics were developed and compared 
on instances with up to n=12 trains (jobs) and m=12 single tracks 
(machines). More precisely, the authors applied an ordinal 
algorithm (ORD), a maximum processing time (MaxPT) and 
a minimum processing time algorithm (MinPT). The ordinal 
algorithm generates a sequence of the operations on different 
machines in the order they are requested for processing the 
jobs, while the MaxPT (MinPT) algorithm tends to schedule 
fi rst the jobs with the largest (smallest) total processing time 
of the jobs on all machines. Each of these heuristics was applied 
in three variants, namely using the release times (RT), the 
completion times (CT) and the due dates (DD) as priorities for 
the ordering of the jobs on the same machine, giving in total 9 
heuristics. It turned out that one of the suggested algorithms, 
called the Ordinal-SCT algorithm (i.e., the ordinal algorithm 
with the shortest completion time as priority rule), yielded 
good results for all three optimization criteria, while the use 
of a more sophisticated algorithm like the shifting bottleneck 
procedure used much more time but gave only very slight 
improvements in the objective function value.

Later, Gholami, et al. [6] extended these investigations with 
the 9 fast edge-orientation heuristics for job shop scheduling 
with applications to train to schedule. These 9 heuristics were 
tested on a set of 118 randomly generated instances with up 
to 2000 operations per instance, namely up to n=20 and 
m=200 again for the three objective functions considered in 
[5]. In addition, results have also been given for the Lawrence 
instances la01 - la20 with the Cmax criterion.

The papers discussed above still did not consider additional 
constraints compared to the classical job shop problems such as 

e.g. | 0|J r Cmaxi
 or | >0|J r T

i i  in the standard scheduling 

notation. Lange and Werner [7] considered the train scheduling 
problem in a given railway network by considering single 
tracks, sidings and stations with permitted recirculation and 
the objective to minimize total tardiness. Sidings are locations, 
where trains can pass other trains and sidings and stations can 
be represented by a set of parallel tracks. This paper considered 
also blocking constraints, i.e., a train cannot enter a section, 
where just another train is traveling on. The authors presented 
four mixed integer programming formulations based on the 
parallel-machine approach including fi xed routes for all trains 
and on the machine-unit approach with routing fl exibility, 
where two types of decision variables (precedence variables 
and order variables) were used. Roughly speaking, the parallel-
machine approach is based on a random assignment of a 
machine from a set of parallel machines, while the machine-
unit approach integrates an optimal choice of a machine into 
the optimization process. These formulations are compared on 
hard scheduling instances with up to 20 trains (jobs) and 11 
sections (machines) in terms of the objective function value, 
the size of the formulation, and the required computational 
time.

In the paper [8], Lange and Werner presented a permutation-
based neighborhood for the blocking job shop problem with 
the objective of minimizing total tardiness in performing 
interchanges of adjacent operations on the same machine. The 
diffi culty arising here is that even after an adjacent pairwise 
interchange (API) of two operations, the resulting solution 
is not necessarily feasible for the problem with blocking 
constraints. The authors developed a repair scheme regaining 
the feasibility for the blocking job shop problem and by this 
approach, partially defi ned solutions are extended to complete 
feasible solutions. The resulting neighborhood is called TAPI 
('tardy adjacent pairwise interchange') and tested within a 
simulated annealing approach for instances with n{10,15} and 
m=11.

These investigations have been extended in [9]. Here in 
particular feasibility and redundancy (i.e., several permutations 
of the operations represent the same feasible solution) aspects 
have been discussed. This paper presented a composite 
neighborhood using both API moves and left shift moves TJ 
(i.e., leftward shifts of all operations of a tardy job) as well as an 
'advanced repairing technique' for guaranteeing feasibility for 
the blocking job shop problem. It turned out that a composite 
neighborhood applying an API move with a probability of 0.9 
and a TJ move with a probability of 0.1 worked well. Numerical 
results with the suggested neighborhood, embedded into a 
simulated annealing framework, have been given and tested 
on all Lawrence instances la01 - la40 [10] and 15 train-inspired 
instances from [7].

In [11], motivated by the train scheduling problem, Lange 
and Werner investigated several heuristic algorithms for the 
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job shop scheduling problem with blocking constraints and 
given release dates. They investigated several representation 
schemes for a solution and presented a basic repair technique 
constructing a feasible schedule from any given operation 
permutation and an advanced repair technique defi ning a 
feasible neighboring schedule from an initial permutation 
and the desired interchange. In applying interchange- and 
shift-based transition schemes, three neighborhood schemes 
API, TAPI and TJ are defi ned and investigated. The preferred 
neighborhood was embedded into a simulated annealing 
framework and tested on train-inspired instances [7] as 
well as benchmark instances given by Lawrence [10]. It was 
shown by Lange [12] that in the case of arbitrary release dates, 
all three neighborhoods are not necessarily connected. An 
interesting remaining open question is whether the presented 
neighborhood is connected in the case when release dates 
are not present (ri-0 for all trains), i.e., whether a globally 
optimal solution can be reached by a sequence of moves from 
any starting solution in this neighborhood. By comparing two 
heuristics (based on the API and TAPI neighborhoods, each 
combined with the TJ neighborhood) with a mixed integer 
approach, it turned out that the heuristic algorithms yielded 
optimal or near-optimal solutions for the small-and large-
sized instances, where none of the two heuristics dominates 
the other one.

Results have been also obtained for special cases of the train 
scheduling problem. Such special problems are of interest e.g. 
when there is a bottleneck part in the railway network which 
needs to be scheduled optimally. Gafarov and Werner [13] 
presented a dynamic programming algorithm of the complexity 

5( )O n  and a heuristic algorithm of the complexity O(n3) for the 
two-machine job shop problem with equal processing times on 
each machine and the objective function ∑Ci if recirculation is 
not allowed (i.e., each job consists of exactly two operations). 
Numerical results have been presented for 30,000 instances with 
up to 30 jobs. It turned out that the average relative error of the 
heuristic was less than 1 %. This problem corresponds to a train 
scheduling problem with three sections, where each train has 
the same speed within a section. The results presented in [13] 
settled the open complexity status of this problem and extends 
existing results for the case of a train scheduling problem with 
only two sections [14]. An interesting remaining open question 
is whether an NP-hard job shop scheduling problem with 
equal processing times on each machine and other objective 
functions exist or whether they are all polynomially solvable 
in the case of no precedence constraints between the jobs 
and no job preemption. As an example of a train scheduling 
problem with a siding, we mention here only the results from 
[15] for scheduling the two-way traffi c between two stations 
on a single-track network with a siding. It has been shown 
that for several objective functions, an optimal schedule can be 
constructed in polynomial time using dynamic programming. 

Conclusion

In the last years, substantial progress in developing 
algorithms for job shop and fl exible job shop problems has been 

reached which can also be used for the exact or approximate 
solution of train scheduling problems. On the other side, 
a practical railway network consists of a large number m of 
tracks and in comparison to machine scheduling problems, a 
broad number of additional constraints have to be taken into 
account. In particular, for security reasons, the avoidance of 
deadlocks is important. A deadlock occurs when two or more 
trains are preventing each other from moving forward by 
each occupying the tracks required by the other. In [16], it 
has been recently shown that the identifi cation of two-train 
deadlocks can be done in polynomial time. Such investigations 
could be included in existing train scheduling algorithms 
in an appropriate form. For future work, it is also necessary 
to improve the exact and approximate procedures to be able 
to solve train scheduling problems including the majority of 
practically relevant constraints with larger values of m exactly 
or at least approximately.
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