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Abstract

A new approach based on the nonequilibrium statistical operator is presented that makes it possible to take into account the inhomogeneous particle distribution and 
provides obtaining all thermodynamic relations of self-gravitating systems. The equations corresponding to the extremum of the partition function completely reproduce 
the well-known equations of the general theory of relativity. Guided by the principle of Mach's "economing of thinking" quantitatively and qualitatively, is shown that the 
classical statistical description and the associated thermodynamic relations reproduce Einstein's gravitational equation. The article answers the question of how is it 
possible to substantiate the general relativistic equations in terms of the statistical methods for the description of the behavior of the system in the classical case.
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Introduction

Thermodynamic description of self-gravitational systems 
based on the quantum theory of gravity at this time does not 
completely solve the problem. Modern approaches try to offer 
a quantum geometric model instead of classical differential 
geometry. The quantum level of description is relevant for 
extremely small distances, while for large distances it can 
be defi ned as ordinary differential geometry and Einstein's 
gravity [1].

Another point of view is to treat the origin of gravity as 
a direct manifestation at the macroscopic level of vacuum 
thermodynamics. This assumption implies that gravity itself is 
just the low-energy boundary of the known macro physics. In 
this case, the concepts of density and velocity fi elds make no 
sense at the microscopic level and appear only as average values. 
Similarly to the fi rst approach, this induced gravity picture 
considers the description of space-time in terms of metric 
as a phenomenon that is valid for scales greater than some 
critical length which could be the Planck length. That draws an 

analogy between the induced gravity and the condensed matter 
systems [2]. Such approaches give the possibility to determine 
the gravitational fi eld equation [3-5].

Of particular interest is that the description of the 
evolution of the horizon can be directly related to the 
hydrodynamic description of physical fi elds. Thus, it is 
possible to establish the correspondence of Rindler's fl uid 
to the derivation of gravitational fi eld equations from local 
nonequilibrium space-time thermodynamics. From the point 
of view of statistical thermodynamics, entropy determines 
the number of independent quantum states compatible 
with macroscopic parameters. This suggests that Einstein's 
equation in the presence of the event horizon is analogous to 
the kinetic equations of transport because they are irreversible 
and correspond to the description of nonequilibrium 
thermodynamics, which is analogous to Boltzmann's theorem. 
The entropy increase theorem can be used for the dynamics of 
a fl uid created by gravity [6-10].

Effective thermodynamics derives from a connection 
between irreversibility and causality, which is encoded in 
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the fundamental concept of entropy, which is appropriately 
refl ected in the description of statistical mechanics. The 
geometric structure of space-time is introduced into the 
concept of entropy and the horizon is encoded in the 
holographic principle [11]. Despite the number of different 
theoretical approaches, the set of fundamental principles that 
lead to this assumption is small and very general. It can be 
supplemented by the concept of space-time construction using 
quantum entanglement [12].

However, despite the evidence for the validity of such ideas, 
it is unknown why and how the gravity comes from the degrees 
of freedom of fi eld theory. Quantitatively and qualitatively, 
it can be seen that the classical statistical description and 
the associated thermodynamic relations lead to Einstein's 
gravitational equation even at the classical level of description. 
Guided by Mach's principle of "economy of thinking", we will 
try to obtain the equation of gravity in terms of the statistical 
approach of classical systems as a result of thermodynamic 
relations.

This paper proposes a new approach based on the 
nonequilibrium statistical operator [13], which is more suitable 
for describing self-gravitational systems with the spatial 
inhomogeneous distribution. The equations of state and all 
the necessary thermodynamic characteristics are governed by 
equations that make the main contribution to the statistical 
sum. The behavior of the system is regulated by appropriate 
thermodynamic relations.

The main idea of this work is to provide a detailed description 
of self-gravitational systems based on the principles of the 
non-equilibrium statistical operator and to offer a statistical 
justifi cation of the general theory of relativity. An important 
result of this approach is the determination of all necessary 
thermodynamic relations for particle systems with the 
inhomogeneous spatial distribution. As a result, we can propose, 
even in the classical approach, to derive the equations of the 
general theory of relativity from the thermodynamic principle, 
which is realized by this statistical description. The aim of the 
work is to fi nd the effective space of thermodynamically stable 
distribution of self-gravitational systems.

Statistical description of self-gravitating systems

Particle systems interacting over long distances sometimes 
cannot be described in terms of usual thermodynamic ensembles 
[14-19] and, therefore, the thermodynamic parameters cannot 
be completely found by the standard methods of equilibrium 
statistical mechanics. In particular, if the energy is non-
additive, then the canonical ensemble is unsuitable for the 
study of systems with long-range interactions because the 
equilibrium states correspond only to local entropy maxima 
[13,18]. The thermodynamic limit does not exist but the 
system is stable [20]. But, with many diffi culties, the study 
of particle systems with long-range interaction provides, the 
development and testing of basic ideas of statistical mechanics 
and thermodynamics.

Moreover, the methods of the statistical description are 
insuffi ciently developed for the case when it is necessary to 

take into account the spatially inhomogeneous distribution 
of interacting particles. This concerns primarily the self 
- gravitational systems. On the other hand, the particle 
distribution itself determines the geometry of the space where 
the particles are located [21]. Thus a need arises to determine 
the geometry of the distribution of matter by the methods of 
statistical physics.

In our opinion, the most suitable method of describing self-
gravitating systems is to employ the nonequilibrium statistical 
operator [13]. This approach provides a possibility to take into 
account the spatially inhomogeneous distribution of interacting 
particles and to follow the evolution of the system. In order to 
fi nd the thermodynamic functions of the system, we have to 
use the presentation of the relevant statistical ensembles with 
allowance for all probable states of this system.

Let us briefl y recall the approach [13] that was developed 
in the papers [22-25] in order to describe the spatially 
inhomogeneous distribution of interacting particles. Under 
the assumption that nonequilibrium states of the system 

can be determined in terms of the energy distribution ( )H r  

and number density of particles  ( )= ( )n ir r r
i  the local 

equilibrium statistical operator distribution may be written in 
the form [13]: 

      = exp ( ) ( ) ( ) ( )Q D H n d
l

r r r r r              (1)

The integration in this formula should be performed over 

the whole phase space of the system 
 

 


1= 32
D dr dp

i ii
. It 

should be noted, that in the case of local equilibrium distribution 
the Lagrange multipliers (r) (r) are functions of spatial 
points. The phenomenological thermodynamics should take 
into account the conservation laws for the average values of the 

physical parameters, i.e., the number of particles  ( ) =n d Nr r  

and energy-momentum  ( ) =H d Er r . Hence the defi nition 

of a thermodynamic relation for our case of inhomogeneous 
systems is required. The variation of the statistical operator 
by the Lagrange multipliers yields the thermodynamic relation 
given by [13]: 

 

 
  

ln ln
= ( ) = ; = ( ) =

( ) ( )

Q Q
l lH E n Nll

r r
r r

             (2)

This relation is the natural extension of the case of 
equilibrium systems.

The further statistical description requires knowledge of 
the Hamiltonian of the systems. In the general relativistic case 
the Hamiltonian of a system of the interacting particle may be 
written as: 

 



2
1= ( )
22 ,

1 2

m c
iH W

i i jv
i

c

r r
i j               (3)

where W(rirj) describes the attractive gravitational interaction 
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and vi is the particle velocity. For small particle velocities, the 
energy density of the systems is given by 

    
2( ) 12( )=( ( ) ) ( ) ( , ) ( ) ( )

22 ( )
pH m c n W n n d
m

rr r r r r r r r
r

        (4)

This expression may be employed if we divide at the cell 
level the whole space with different masses and consider the 
motion in the phase space of an uncompressed liquid, which 
corresponds to the well-known description of hydrodynamics 
at the macroscopic level.

In our case of a system with the gravitational character 
of interaction the nonequilibrium statistical operator may be 
written in the form 

  



  
  

    
 
 
 

  


   

2( ) 2( ) ( ) ( ) ( )
2 ( )= exp

1 ( ) ( , ) ( ) ( )
2

p m c n d
mQ D

l
W n n d d

rr r r r r
r

r r r r r r r
     (5)

After mathematical manipulation in terms of the theory 
of Gauss integrals [26-28] and with the use of an additional 

fi eld variable   and the chemical activity ( ) exp ( ) r r  the 

statistical operator reduces to the functional integral [25,29]: 

     = exp ( ( ), ( ), ( ))Q D d f
l

r r r                  (6)

where the effective "local dimensionless thermodynamic 
potential" is given by 

 

  


  

 
 
 
 

     





3
21 2 ( )1= ( , ) ( ) ( ) ( ) 32 ( )

2exp ( ) ( ) ( ) ( )

mf W d d

m c d

rr r r r r r r
r

r r r r r
             (7)

The inverse operator satisfi es the condition 

    1( , ) ( , )= ( )W Wr r r r r r , where the interaction 

energy is the Green function for this operator. The function 

  ( ( ), ( ), ( ))f rr r  depends on the distribution of the fi eld 

variable, the chemical activity and the inverse temperature 
(r). The statistical operator makes it possible to obtain the 
thermodynamic relation that is used in effi cient methods 
developed in the quantum fi eld theory without imposing 
additional restrictions. Now we apply the saddle point method 
employed to fi nd the asymptotic value of the statistical operator 
Ql for an increasing number of particles N ∞. The dominant 
contribution is given by the states that satisfy the extreme 
condition for the functional. It should be noted that the saddle 
point equation presents the thermodynamic relations and 

thus we have an equation for the fi eld variables, 


=0
( )
f
r

, the 

normalization condition   
  

= ( ) =
( ( )) ( )

f f d Nr r
r r

 and also the 

conservation law for the energy of the system 


 =
( )
f d Er
r

.

The solution of this equation completely determines all 

macroscopic thermodynamic parameters and describes the 
general behavior of a system of interacting particles, whether 
this distribution of particles is spatially inhomogeneous or 
not. The above set of equations in principle solves the many-
particle problem in the thermodynamic limit. The spatially 
inhomogeneous solution of this equation corresponds to the 
distribution of interacting particles. Such inhomogeneous 
behavior is associated with the nature and intensity of the 
interaction. In other words, the accumulation of particles in a 
fi nite spatial region (formation of a cluster) refl ects the spatial 
distribution of the fi eld, chemical activity and temperature. It 
is a very important notice that only this approach provides a 
possibility to take into account the inhomogeneous distribution 
of the temperature and chemical potential that may depend on 
the spatial distribution of particles in the system.

Thermodynamic rel ation

For further consideration, we analyze the general 
presentation of the "local thermodynamic potential" (7). We 

introduce the new fi eld variables   ( )) ( )=r r , then the 

equation (7) may be written in a simpler form, i.e., 

 



      

 

1 31= ( ) ( , )) ( ) ( ) ( )
2

2exp( ( ) ( ) ( ))

f W d d

m c d

r r r r r r r r

r r r r
                (8)

where the local thermal de-Broglie wavelength is given by 

 
 
 
 

 
1

2 2( )( )=
2 ( )m

rr
r

. To draw more information about the 

behavior of the interacting system, we also introduce some 
new variables. From the normalization condition (9) we obtain 

   3 2( ) exp( ( ) ( ) ( )) =m c d Nr r r r r                 (9)

that yields the macroscopic density whose defi nition is given 
by 

    3 2( ) ( ) exp( ( ) ( ) ( ))m c dr r r r r r            (10)

In the case without interaction (for free particles (r)=0), 
we write the chemical activity in terms of the chemical potential 

  ( )= ( ( ) ( ))expr r r and thus obtain a relation 

    32( ) ( )= ( ) ( ) ln( ( ) ( ))m cr r r r r r              (11)

that generalizes the relation of the equilibrium statistical 
mechanics for relativistic systems.

From the minimum "local thermodynamic potential" in 
terms of new variables, we obtain an equation: given by 

      1( ) ( , ) ( ) ( )=0W dr r r r r r             (12)

Having multiplied this equation by   ( , )W dr r r  we obtain 

an equation from which the fi eld variables may be found, i.e., 
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     ( ) ( ) ( , ) ( ) =0W dr r r r r r             (13)

After that, in the case of relativistic particles with 
gravitational interaction, we make use of presentation 10 and 
thus write the general formula for the chemical potential., i.e., 

   

   

   

    

32( ) ( )= ( ) ( ) ln ( ) ( )
32= ( ) ( ) ( ) ( , ) ( ) ln( ( ) ( ))

m c

m c W d

r r r r r r

r r r r r r r r r        (14)

Now we can determine the average value of the energy of 
the system using thermodynamic relation 

    
 

   
ln

= ( ) = ( ) ( )
( ) ( )

Q
lH d dr r r r r

r r
           (15)

that transforms to the general defi nition: 

 

   

  
     

2= ( ) = ( ) ( )
3( , ) ( ) ( ) ( )ln( ( ) ( ))

E H d m c d

W d kT d

r r r r r

r r r r r r r r r
              (16)

The last part of this relation is exactly equal to the entropy 
of the systems and thus the free energy of the system is given 
by [30],

     2= ( ) ( ) ( , ) ( ) ( )F m c d W dr r r r r r r r              (17)

Thus we have all the thermodynamic relations needed for 
the description of the dynamical behavior of a non-equilibrium 
system [31]. Such presentation determines the evolution of a 
non-equilibrium system in the general case, however, the 
description is possible to describe only in the special case 
[22,24,25,29].

Thermodynamically induced geome try of self-gravita-
ting systems

The physical theory is based on the postulated geometric 
properties of the space where the interacting particle are 
located. The problem of geometry as a whole is equivalent 
to the problem of the behavior of the fi elds that form this 
space [32-35]. In what follows we propose a geometric 
description of a thermodynamically stable distribution of a 
self-gravitating system. The character and intensity of the 
interaction in the system determine the effective geometry of 
the medium that is provided by the minimum of the total free 
energy [21]. This article proposed a geometric description of a 
thermodynamically stable distribution of different interacting 
particles. The character and intensity of interaction between 
particles determine the effective geometry of the medium 
which is provided by the minimum of the total free energy. 
In the given article is proposed another way to determine the 
geometry of the self- gravitating system.

For zero temperature free energy is equal to action in 
the term of density [36]. We can remind that after the Wick 
transformation the integral of the free energy over time is 
reduced to the action in the Minkowski space, i.e., 

     
1 12= ( ) ( ) ( , ) ( ) ( )S m c d dct W d dct
c c

r r r r r r r r            (18)

From the virial theorem [31] we may conclude that the fi rst 
part of the free energy 17 is the average value of the energy-

momentum tensor of free particles   ( )T d
ii

r . In the relativistic 

theory [31,37] the energy-momentum tensor for a macroscopic 
system is given by 

 =( )
,

T P u u P
i j i j ij

               (19)

where iu  is the four-velocity with the condition uiu
i =1, ∊ is the 

energy density, and P is the pressure in the system. As is shown 
in [31,37], the fi rst part of the action determines the energy-

momentum tensor = = 3T SpT P
ii ij

  in the four-dimensional 

Euclidean space that may be rewritten in a different four-
dimensional curved space provided we take into account the 

volume element   4=d gd x  with g=det gij where gij is the 

metric tensor. After that, we should take into account the part 
of the energy that is spent on the distribution of matter that 
forms the geometry [21], i.e., 

 


     
21= ( , ) ( ) ( )

32
cS W d dct Rdg c G

r r r r r             (20)

where R  is the curvature of the space and   4=d gd x  - 

is the standard form of an element of the four-dimensional 
volume g=det gij with the metric tensor gij. Variation action 
by matric tensor yields an equation for the gravitational fi eld 
under the assumption that the curvature is induced by the 
distribution of matter with the energy-momentums tensor Tij. 
In the correspondent general theory of relativity, the Einstein 
equation for the curvature may be obtained in the well-known 
form given by 

 1 8= 42
GR Rg T

ij ij ijc
               (21)

This equation for the gravitational fi eld is incomplete 
because along with the second-rank tensor Rij another 
second-rank tensor gij can be present. A simple linear theory 
may contain a simplistic linear combination in the form 

  =R g T
ij ij ij . From such a simple reason we can take 

into account the probable part associated with the symmetry 
conservation of the tensor. Such native tensor in this case is 
the metric tensor. This possibility is realized in the Einstein 

equation with the cosmological constant = ( )V  where the 

potential depends on the fundamental scalar fi eld  [36]. From 
this equation, we may conclude that in the dynamics of the 
Universe the crucial contribution is associated only with the 
gravitational force while any other forces do not take part in 
such dynamics. We note again that the distribution of matter 
determines the geometry. Without this distribution, we cannot 
speak about any geometry.
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Conclusion

A new approach that employs a non equilibrium statistical 
operator with allowance for inhomogeneous distributions of 
particles is proposed. This method applies the saddle-point 
procedure in order to fi nd the dominant contributions to the 
partition function and provides a possibility to obtain all the 
thermodynamic parameters of the system. This approach 
makes it possible to solve the problem with inhomogeneous 
distributions of particles. On much longer timescales, the 
evolution towards the true thermal equilibrium is postulated. 
In this way, we can solve the complicated problem of the 
statistical description of systems with gravitational interaction.

An attempt is made to fi nd motivation for the evolution 
of self-gravitating systems. The change of the local 
thermodynamic potential induces the inhomogeneous 
distribution of matter and determines the geometry of this 
distribution. The thermodynamically induced distribution of 
matter completely determines the geometry of the latter. This 
interpretation of the geometry makes it possible to follow the 
evolution of the system. The paper answers the question of how 
is it possible to substantiate the general relativistic equations 
in terms of the statistical methods for the description of the 
behavior of the system in the classical case.
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