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Abstract

The two-dimensional black hole vacuum obtained from a spatial slice of the BTZ black hole is mapped explicitly to a tractroid surface minus a bounding circle.
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Introduction

At a fi xed time  (for example  = 0) the 3d Euclidean BTZ 
black hole  BM [1,2] of mass M > 0 reduces to a 2d spatial slice 

whose metric 
2
0ds  is easily transformed to a Poincare metric on 

the upper half-plane

 
. 2{ , | 0}.

def
H x y y                    (1)

Moreover, the quotient 
.def

X H   of H+ by a subgroup  

  of  2,G SL  generated by a parabolic element  (ie. trace  

= ±2) has for  M= 0 the structure of a 2d black hole vacuum [3]. 
We indicate a realization of this vacuum by way of an explicit 

bijection 
~

:T Xa
   , where Ta


 is a tractroid surface with a 

deleted boundary circle of radius a.

The spa tial slice of  BM

BM, with zero angular momentum, is given by the metric 
with periodicity in the Schwarzschild variable  

12 22 2 2 2 2
2 2 .r rds M d M dr r d 


   
       
   
    

                 (2)

ds2 solves the Einstein vacuum fi eld equations

1 0
2

R Rg gij ij ij                    (3)

with negative cosmological constant 
. 21 /

def
    , where   

in (2) is a positive constant. By our sign convention, the Ricci 

scalar curvature R in (3) is given by 26 /R   . 2
0ds  in the 

introduction is therefore given by

2.2 2 2
0 2

2

def drds r d
r M

 




              (4)

which by way of the transformation of variables

, / 0x y r                       (5)

in case M = 0 reduces to the Poincare metric

2 2.2 2
2

def dx dydsP y

  
 
 

                (6)

on H+  in (1). Specially for X, we choose

 
. 1 2

| |
0 1

def n nn n



         
   

                 (7)
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for  set of whole numbers, 
. 1 2

0 1

def 


 
  

 
, where the linear 

fractional action of  2,SL   on H+  is restricted to  :

   
.1 2

, 2 , ,
0 1

defn
x y x n y n




 
    

 
              (8)

which by (5) is consistent with the above Schwarzschild 

periodicity:    , 2 ,x y x n y  .

Construction of the ma p a:T X
  ; the main observa-

tion

The tractroid Ta of radius a > 0 of interest is the surface of 
revolution about the y-axis of the tractrix curve parametrized 
as follows:

   
. ./ / 2 / / 2 /, log 1 1

def deft a t a t a t a t ax t ae y t a e e ae e        
 

         
       
                    (9)

for t ≥ 0. Ta   is therefore the set of points S (u,v) in 
3 given 

by

           

 

. .
/ /

udef. def.
2u/a -u/a 2u/aa

,  cos , sin , cos ,

(u)     

sin , ,

= y u = alog e + e -1 -ae e -1

def def
u a u a

S

S u v x u v x u v y u ae v ae v S u  

 
 
 

      

                 (10)

for   2,u v  . Since    0, cos , sin ,0S v a v a v (as  0 0),S 

  
.

, | 0
def

T S u v T ua a
                   (11)

is Ta minus points on the boundary circle   S (0,v), as mentioned 
in the introduction.

Let :q H X   denote the quotient map that takes  ,x y

to its   -orbit  
~
,x y in (8) and defi ne :H Ta

   by

 
.

, log 1 ,
def yx y S x

a
      

                      (12)

where we note that since , 0y a  , log 1 0yu
a

     
 

indeed 

 ,x y Ta
  by (11). Then 

~
:T Xa
   is defi ned by the 

commutativity of the diagram

                         ; that is      
.~

, q , 1   
def

uS u v v a e          

                (13)

for u > 0. For    
~
, ,x y q x y in X and log 1 0yu

a
    
 

again,    1 1 1 ,yua e a y p S u x Taa
          
 

 such 

that    
.~

,
def

p q x y  , which shows that 
~
 is surjective. 

Finally, 
~
  is also injective and thus indeed is a bijection. 

Namely, if  , , 1,2p S u v T jaj j j
   , such that 

   ~ ~
1 2p p    ie. 1 2, 1 , 11 2

u u
q v a e q v a e                    

 (by 

(13)), then 21 2v v n  , 1 21 1
u u

a e a e        
     for some 

   (  (8)) ,  cos cos ,  sin sin , ,1 2 1 2 1 2 1 1 2 2n by u u v v v v S u v S u v        

(by (10)); ie. 1 2p p .

Discussion

The BTZ vacuum (or ground state) X has a single  parabolic 
generator  in (7). In [4], for example, a BTZ vacuum with 
two parabolic generators is considered - in addition to other 
QFT matters. It would be interesting to fi nd, also, a concrete 
geometric realization of the latter vacuum - or that of higher 
dimensional BTZ black hole vacua. One could also discuss the 
naked singularity case where M < 0.

Conclusion

The map 
~
 in (13) provides for a concrete, geom etric, 

tractroid representation (or model) of the Euclidean BTZ 
vacuum X with Poincare metric in (6);  is given by (7). This 
result is the best possible in the sense that a general result 
of D.Hilbert [5] prevents the full mapping of all of Ta  onto 
X. Our discussion proceeded at a fi xed time  = 0, in which 
case the black hole metric (2) was reduced to the 2d spatial 
slice (4). One could also consider the 2d metric obtained by 
fi xing the Schwarzschild variable  in (2), and study the false 
vacuum decay for this 2d black hole background. Compare the 
interesting references [6-8], for example, where the studies 
therein are of a quite different focus since the word ”vacuum” 
here simply means that we take the black hole mass M = 0 in 
(2). In [6], for example, the effective potential is considered 
for various values of the black hole mass. Also here, we need 
the Schwarzschild variable  to be non-fi xed in order to derive 
the Poincare  metric version (6) of (4) in case M = 0, where (6) 
can actually be transformed to a metric on the tractroid. Thus 
issues regarding expectation values of quantum fl uctuations 
and mass spectra, for example, do not arise in the present 
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context, where in fact the periodicity of , moreover, which 
leads to equation (8), is crucial for the main construction of 
the bijection 

~
 . 

In addition to the 2d vacuum black hole-tractroid 
correspondence that we have constructed, there is also a 2d 
wormhole-catenoid correspondence. In the reference [9] a 
2-dimensional section of a 3-dimensional wormhole is realized 
as a catenoid surface – the section is obtained by fi xing a 
spherical polar coordinate value:  = π/2.
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