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Abstract

The theory of surface phenomena in the production of micro-and nanocylinder for important cases is considered. Analytical solution to Gibbs–Tolman–Koenig–Buff 
equation for nanowire surface is given. Analytical solutions to equations for case the cylindrical surface for the linear and nonlinear Van der Waals theory are analyzed. 
But for a nonlinear theory, this correspondence is absent.
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Introduction

In this article, the surface tension in nanowires production 
by the Taylor–Ulitovsky method is studied. Surface tension is 
a fundamental thermodynamic parameter that signifi cantly 
infl uences the creation of nanowires.           

The chemical and physical properties of interphase 
boundaries in nanowires, as well as for nanoparticles, have 
been studied in a huge number of publications (see [1], 
fundamental monographs [2-5], and literature [6-21], and 
also my researches [22-28].  We can single out the following 
theoretical approaches: Gibbs–Tolman–Koenig–Buff equation 
method ends the linear and nonlinear Van der Waals theory.

The study aims at derivation and detailed analysis of 
expressions for the surface tension for the microwire in 
thermodynamic equilibrium on the Gibbs–Tolman–Koenig–
Buff equation method and on the Van der Waals theory.

The given theory can fi nd application in microwire 
production technology Figures 1,2. 

As you can see from the fi gures, we must study cylindrical 
and conical surfaces.

Figure 1: Process of casting glass-coated amorphous magnetic micro- and 
nanowires. 
1. Cylindrical zone.  2. Cone zone.
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Modeling of surface energy for microwires in Gibbs–
Tolman– Konig–Buff`s theory

We will use the Gibbs – Tolman – Koenig – Buff differential 
equation [2-6] (for a cylinder) to describe the surface tensions, 
i, of nanowires [1]:
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Where Ri is the radii of micro-and nanowires (the radius of 
its metallic kernel, Rm, or the total radius of glass, Rg).  

Non-negative parameters (Tolman length), i, characterize 
the thickness of the interfacial layer (for example, between 
glass and glass-metal). 

In surface thermodynamics, the Tolman length is used as 
a parameter that is equal to the distance between the surface 
of tension and the equimolar surface. The numerical values of 
parameter the analog  

"Tolman length"   for micro and nanowire is in the range 
from 0.1 to 1 μm.

The integral in (1) (if i =const.) can be exactly taken. The 
fi nal result has the form [7,10]:
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The well-known Tolman formula (for cylinder) is a special 
case  R    for this formula (2) 

1( )/ ~
1
R

 





.                                  (3a)

In case  R   : 

0.64( 5) (/ ~ / )R  
                                         (3b)

We represent the Rusanov linear formula [5,11] for the 
cylindrical surface Figure 3.

Modeling of surface energy for Micro- and Nanowires in 
linear Van der Waals theory

The basic equation of the linear Van der Waals theory of an 
inhomogeneous medium (see [1-3] for details) can be written 
in the form:
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Where n (x) is the function when proportional to the 
volume density N(x)  (x = r/, no=const.),  r  is the radial variable 
measured from the center of a nanoparticle,  is the Tolman 
length [1-3].

The general solution to Eq. (4) has the form

( ) ( / ) ( / )1,2 0 0n r n AI r BK r   
,                  (5)

Where ( / ), ( / )0 0I r K r   is a modifi cation to Bessel and 

Hankel functions?

Figure 2: Drawing of micro- and nanowire fabrication process by the Taylor–
Ulitovsky method.
1. Microbath: 1A). Primary cone of  microbath.  1B). Secondary cone of microbath.  
2. Extension zone.  3. Crystallizer.

Figure 3: Functions graphs of solutions (3) (dashed line),   and of solutions (10 -14) 
(bold line) are presented.  Experimental data for the surface tension of metal-glass 
are presented depending on the radius of the metallic kernel, Rm.
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(0) ( ) 1n n R n  ,    ( ) 2n n  .              (6)

We will accept the volume density function, N(r/). We get:  

( ) (0) ( ) 1/N r n n R    ,   ( ) 0N n    . 
                                            (7)

Substituting solution (5) into expression (7) and integrating, 
we obtain:
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Solution (8) can be used for calculating adsorption, which 
is defi ned as the excess number of atoms or molecules in the 
surface layer of the nanoparticle per unit area:
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(x = r/, x0 = R/).

Taking into account adsorption (9), we obtain the 
differential equation
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(see formula (2) and (3a));

and   if    x << 1
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Where  = 1,781 is  Euler constant,  we obtain
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This equation is integrated numerically.

Modeling of surface energy for Micro-and Nanowires in 
nonlinear theory

The nonlinear equation can be written in the form
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The simple volume density function, N, may be determined:
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The results obtained have a physical meaning only as long 
as the function N1 is positive.

The resulting density profi le (see Figure 4 and (16), (17)) is 
very different from the results of the linear theory (see Figure  
5 and (8)), and therefore the GTKB theory (see (2), (3a), (3b)). 

Micro and nanowire will only be produced for a limited 
metallic kernel, Rm.

The density profi les in [13] (see Figure 6) are very different 
too from the results in Figure  4. 

Figure 4: Function graph of solution (16) is presented.

Figure 5: Function graph of volume density function, N(r/δ) is presented.
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Modeling of surface energy for Micro-and Nanowires in 
the pure case theory

The equation can be written (in the pure case theory) in 
the form:

1
n n 02 2r
  

                                                                   (18)   

A particular solution for equation (18) can have the form:

ln (R )2n c  ,                                                            (19)   

We will accept the initial values

N 12,0 
                                                          (20)

and get

1 ln (R )2N   
                                        (20a)

Function graph   N2    is shown in Figure 7.

Conclusion

A feature of micro-and nanowires is that these objects 
consist of an amorphous alloy core (metal conductor) with a 
diameter of (0.1...50) μm, covered with a Pyrex-like coating with 
a thickness of (0.5...20) μm. Therefore, the main technological 
parameter for the production of glass micro-and nanowires is 
the surface tension of the surfaces of micro-and nanowires. 

According to the previous analysis [1], the most signifi cant 
effect on the geometry of such microwires comes from the 
glass properties. The microwire radius Rg (the outer radius of 
the glass shell) is estimated as follows [1]:

2ç
~ 1ó

k
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


                                        (21)

Where k is the parameter, which is dependent on a casting 
rate (0 < k < 1); Vd is the casting rate; s is the surface tension.

The metallic radius,  Rm, is possible to estimate 
approximately:

~ 2
smRm kmVd


                           (22)

 sm is the surface tension of metal – glass (0 < km< 1).

We thus confi rm that surface tension, defi ned as excess free 
energy per unit surface area, determines the radius of micro-
and nanowires.
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