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Abstract

Heterozygote advantage as a natural consequence of adaptation in diploid organisms is an attractive mechanism by which two alleles are maintained in natural 
populations. It has signifi cant effects on biodiversity conservation and plant and animal breeding programs. The mathematical modeling of this biological mechanism 
is important for eco-evolutionary dynamics studies and genetics investigations. In this paper, I aimed to formalize the changes of gene frequency in time v(t), and in 
time and space v(t,x) with additive effects in a birth and death process of the Haldane genetic model using Brownian motion under fl uctuations of habitat. In addition, 
the gene-environment interactions were evaluated under the mechanism. The mathematical model was investigated in both deterministic and white noise forms. It was 
shown that if the environmental random processes in the Haldane genetic model changed quickly and smoothly, then the diffusion approximation of the allele frequencies 
could be modeled and analyzed by a stochastic partial differential equation. It was revealed that the mathematical model used in this paper belonged to a more general 
model. The mathematical model was analyzed and since the modeling by the Cauchy problem had not had a usual global solution, the qualitative behavior of the solutions 
was considered. Besides, the generalizations of ItÔ integral were defi ned as the integrals of Wick products of random parameters and noise components. It was found 
that if v(t,x) behaved like a super-Brownian motion and the fatal mutations took place, as a consequence a tiny group of alleles was quickly disappeared. The v(t,x) was 
unstable when it was close to one. The stationary phase appeared and v(t,x) tended to the stationary situation in the intermediate region under the stabilizing selection. 
This was a condition under additive gene effect, but with the presence of dominance gene effect, it might be ambidirectional without considering the epistatic effects. 
The emergence of the dominance and epistatic effects was due to the directional selection. Since Falconer and MacKay had already introduced a deterministic model to 
study the frequency of genes with no spatial spreading of the population and no stochastic processes, another model was explained to study their equation in the case 
of heterozygote intermediate for diffusion approximation of frequency of genes, including white noise. It was shown that if the rates of mutation and selection became 
very small, then the model would be more deterministic and predictable. On the other hand, if the rates of mutation and selection became large, then the model would be 
more stochastic, and more fl uctuations occurred because of the strong effective noise strength. In this case, the stationary situation did not take place. The outlook can 
help to model the similar biological mechanisms in eco-evolutionary community genetics for studying the indirect genetic effects via the systems of stochastic partial 
differential equations, and white noise calculus.  
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Introduction

Advanced population genetics started with the works of 
Wright, Fisher, and Haldane, and the fundamental genetic 
models were presented and investigated by Fisher, Wright, and 
Kimura  [1-4]. Haldane merged Mendel’s theory of inheritance 
and Darwin’s theory of evolution to understand how mutation, 
selection, and random genetic drift could affect the evolutionary 
mechanisms and also, to emphasize that natural selection 
could act in a Mendelian structure such that Darwinism and 
Mendelism were consistent [5]. Wright [6,7] and Maruyama 
[5] studied the distribution of gene frequencies using different 
genetic models and proposed the model for studying the 
structured populations. Wright [6-8] also investigated the 
effect of migration, mutation, and selection in changes in 
gene frequency with population size. He explained that the 
distribution of gene frequency without selection, migration, 
and mutation would be unchanged. Kimura [9] analyzed the 
probability of fi xation of genes.

Wright [6,8] derived the stationary distributions and studied 
the gene frequency distribution under mutation occurrence, 
but Kimura [9] and Maruyama [5] proposed a model for 
studying the gene frequency distribution without mutation. In 
a large population, the frequency of favorite genes increases by 
selection and is fi nally fi xed. But, if the size of the population 
is small, one gene can be fi xed randomly [10]. In cases where 
the genotype of heterozygote shows a selective advantage 
over homozygotes, the genetic variation will maintain in a 
population that is very important for quantitative and eco-
evolutionary genetics studies (Robertson, 1960) [10]. The 
heterozygote advantage has considerable effects on biodiversity 
conservation, and the study and formulization of diffusion of 
the heterozygotes are important to deduce its effects [11].

The most important traits in medicine, agriculture, and 
biology have a complex dynamic genetic process. This process 
is under the control of many structural and regulatory genes 
and is also infl uenced by environmental factors [12]. In such 
traits, linkage disequilibrium and also systematic genetic 
factors such as mutation, migration, and multilevel selection 
affect the frequency of genes and therefore affect the results of 
genetic studies [1].  

Additive and non-additive gene effects are the causes of 
genetic variability in quantitative traits. Suppose the combined 
effects of the alleles are equal to the sum of their individual 
effects of them. In that case, the underlying gene effect will be 
additive effects, and the value of the heterozygote will be the 
intermediate of the homozygotes which is simply referred to as 
the heterozygote intermediate. But non-additive effects appear 
from both dominances, i.e., the interaction between the alleles 
within a locus, and epistasis, i.e. the interactions between 
alleles of different loci [13]. 

The narrow-sense heritability as a commonly used term to 
describe properties of quantitative includes only the additive 
effects of variation, and therefore represents the fi xable part 
of the genetic variance and transmitted to next-generation 

[13]. In genomic prediction study, the additive effects of genes 

account for mathematical modeling of the infi nitesimal genetic 
structures. In population and community genetics, a suitable 
equation is necessary for modeling the mathematical problems 
of the diffusion approximation of the gene frequency in a 
random environment.

Diffusion under additive effects has already been studied 
by Jensen [14], Nagylaki [15] and Bürger and Ewens [16]. 
Fisher [17,18] and Wright [8] pioneered the use of diffusion 
approximations for the study of gene frequencies, with 
emphasis on the fl ux of mutations. Wright  [6,7] also used 
diffusion approximations to study the fi xation of benefi cial 
alleles. Diffusion approximations have also been widely used 
to study the random variation of selection coeffi cients ) [19]. 
The fi rst approximation of the stochastic solutions could be 
the deterministic model of fi xed environment equations. The 
environment could be assessed as a continuous or discrete 
variable. In modern population genetics, the geographical and 
spatial aspects of the diffusion of the gene frequencies and 
their infl uences on the evolutionary dynamics are considered 
and investigated [20,21].

A variable is called stochastic if its values change randomly 
over discrete or continuous time. If a process takes a different 
range of values, it is called diffusion or continuous process [21]. 
The Wiener process which is a real-valued continuous-time 
random process is a fundamental device for limiting theorems. 
It was presented as a natural and mathematical model of 
Brownian motion. The mean square derivative of Brownian 
motion or the Wiener process is referred to as white noise and 
if the probability distribution of white noise is Gaussian, then 
it is called Gaussian white noise [22]. Figure 1 shows a standard 
Wiener process that was created by Maple 18.01 software.

The basic model of Brownian motion is a one-dimensional 
random walk. A random walk is a process like genetic drift or 
Brownian motion, including a succession of changes in their 
directions and sizes governed by chance [23].

While Brownian motion is a continuous-time and 
continuous-space model, random walk is a discrete-time 

Figure 1: A standard Wiener process. Commands and parameters in Maple 18.01: 
W := Wiener Process( ); P := Path Plot (W(t), t = 0 .. 10, timesteps = 40, replications = 
30, thickness = 2, color = black, axes = BOXED, gridlines = true);P;
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and discrete-space one. Brownian motion gives rise to the 
particles being in constant motion causing more stability. 
If the future of a process depends on its present status, 
then this process is called a Markovian process or Markov 
chain. An ordinary example of the Markov process is the 
inbreeding mating method  [24]. Also, according to Mendelian 
inheritance, changing the frequency of an allele from one 
generation to the next one is Markovian [9]. If the expected 
value of the future of a process is equal to its present value, the 
process is called a martingale process. Brownian motion can 
be described as a martingale, a Markov process, or a normal 
process. The consequence of a random walk can be merged into 
a Brownian motion; also, the fractional Brownian motion has 
great applications in forecasting problems  [25]. Also, Wang 
[26] studied the fractional Brownian motion with random 
diffusivity and addressed the case of non-Gaussian anomalous 
diffusion in terms of a random-diffusivity mechanism in the 
presence of power-law correlated fractional Gaussian noise. 
Chertzvy et al. [27] found that for massive particles performing 
fractional Brownian motion, inertial effects not only destroyed 
the stylized fact of the equivalence of the ensemble-averaged 
mean-squared displacement to the time-averaged mean-
squared displacement of overdamped or massless fractional 
Brownian motion but also dramatically altered the values of 
the ergodicity-breaking parameter. 

birth-and-death processes, as well as modelling of natural 
catastrophic events, have recently been reincarnated in terms 
of various resetting models, and within these restart-based 
models the processes of fractional and geometric Brownian 
motion (applicable to the multiplicative growth in the population 
dynamics).  Wang, et al. [28] found, inter alia, that the resetting 
dynamics of originally ergodic fractional Brownian motion for 
superdiffusive Hurst exponents developed disparities in scaling 
and magnitude of the mean-squared displacements and mean 
time-averaged mean-squared displacements indicating weak 
ergodicity breaking. On The other hand, Vinod, et al.  [29] 
derived the ensemble and time-averaged mean-squared 
displacements for Poisson-reset geometric Brownian motion.

The random fl uctuations of the environmental variables 
can change the frequency of genes and genotypes. These 
variables like temperature, humidity, pressure, light, elements 
of the air and soil, chemical materials, and other unknown 
factors accompanied by the diffusion of the population in the 
habitat produce random white noise. These random factors 
of the habitat may trigger the expression of duplicated genes 
and change the gene frequencies, so that these genes produce 
one protein or two very similar proteins, i.e. two identical 
phenotypes that are recognizable by the electrophoresis 
methods [30] and therefore present white noise. In addition, 
neutral mutations infl uenced by the random factors of the 
environment exhibit similar phenotypes and produce white 
noise too.

Kimura [9,31] had the largest contribution to diffusion 
approximations in the study of gene frequencies and provided 
a solution to the stochastic processes in genetic models based 
on the Kolmogorov backward equation for the fi xation of gene 

frequencies. The analysis of the Kolmogorov-Petrovskii-
Piscuinov (KPP) equation of Brownian motion that could be 
applied to genetic models including genes with additive effects 
was reported by Mueller and Sowers [32]. Beforehand, McKean  
[33] applied this equation in Brownian motion to analyze the 
genetic models with additive gene effects. Benth, Deck, and 
Potthoff [34] also analyzed the Cauchy problems for some 
non-linear stochastic equations with white noise. Malliavin 
[35] proposed the stochastic analysis of Wiener functionals, 
arising from the solutions of stochastic differential equations. 
A differential equation in that some of its terms are stochastic 
processes is called a stochastic differential equation; also, the 
solution of a stochastic differential equation is a stochastic 
process.

White [36] assessed the systems of interacting species 
living in a fl uctuating random environment with white noise. 
Considering Gaussian diffusion in the Wright-Fisher genetic 
model with additive gene effects, Norman [37] investigated 
the random fl uctuations in gene frequencies under mutation, 
selection, and random genetic drift. Moreover, the random 
genetic drift in a diffusion context has also been studied widely 
by Ethier and Nagylaki [38]. Illner and Wick [39] also studied 
statistics and measure-valued solutions for some genetic 
models with additive gene effects describing super-Brownian 
motion. 

An attractive case is when the heterozygote genotypes 
present a selective advantage over other genotypes [10]. The 
heterozygote advantage has signifi cant effects on biodiversity 
for the preservation of genetic variation in population and on 
plant and animal breeding programs in developing superior 
hybrid genotypes. Therefore, the mathematical modeling of 
this biological mechanism is important in eco-evolutionary 
dynamic studies and genetics investigations. The aims of the 
present study were: i) to study the diffusion approximation of 
the gene frequency based on the Haldane genetic model under 
the conditions of heterozygote intermediate or additive gene 
effects in a birth and death process in a random environment 
under a systematic process such as mutation and selection, ii) 
to evaluate the gene-environment interactions under Brownian 
motion model and iii) to include Brownian motion and connect 
it to the genetic model to mimic random drift.  

Materials and methods

Haldane genetic model   

To drive Haldane genetic model, fi rst the Wright-Fisher 
genetic model with assumptions of monoecious diploid 
population, diallelic locus, and non-overlapping generations 
was considered [37]. I considered a single autosomal locus 
with alleles, B1 and B2, and allele frequencies of v(t,x) under the 
conditions of additive gene effects. The alleles were transferred 
independently dynamic from one generation to the next based 
on Hardy-Weinberg law with the birth and death Markov 
process [32,37]. With two alleles, the population consisted of 
three genotypes; B1B1 (dominant homozygote genotype), B1B2 
(heterozygote genotype), and B2B2 (recessive homozygote 
genotype). In a diploid population with N individuals, there will 
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be 2N genes [40]. It is important to mention that this genetic 
model can be generalized to the dioecious population. For more 
details, refer to Norman [37].   

It was assumed that two genotypes were selected with 
replacement and randomly at each occurrence. Since some of 
the mutations are lethal, the fi rst individual dies and replaces 
by chance by another one whose kind relies on that of the 
second selected. So that, Wright-Fisher genetic model like 
Moran genetic model [41] is a birth and death process, and has 
resemblances to the Bernoulli-Laplace model, and Ehrenfest 
model  [36,42]. Moran genetic model is a variant of the Wright-
Fisher genetic model (Hofrichter, Jost, [1] except that the 
Moran genetic model does not contain fi tness ) [39,42]. As a 
result, Haldane genetic model is the limit of the Wright-Fisher 
genetic model (see Lemma 1). The linkage was not considered 
unless the complete crossing-over took place.  

Genetic variables   

It was supposed that vn was the relative frequency of the 
B1 gene in the group of matures of generation n. Also, It was 
assumed that the random variable vn was measurable for the 
time-dependent Ʊn

N = -fi eld Ʊn
N , and the random variable v 

was measurable for the time and space-dependent Ʊn = -fi eld 
Ʊn. Here, Ʊn

N was the -fi eld generated by Un , Un-1 ,…, U0 where 
Un was the Markov process, and {Un , n ≥ 0} was a martingale. 

Also, Ʊn =     ( ) : 0,z A A n R   where n = t was integer 

time, n ≥ 0,  , 1t n n  , A was a Borel-measurable subset of 
R, z(A) was the independent Brownian motion and   was the 
Borel- algebra  [32,37]. 

I considered three genotypes, B1B1, B1B2, and B2B2 with 
relative fi tness of w1, w2, and w3, respectively under random 
mating, after one generation selection, the relative frequency 
of genotypes is proportional to w1vn

2, 2vn(1- vn)w2, and (1- 
vn)

2w3, respectively (Norman, 1975). So, the expected B1 gene 
frequency after one generation selection is

2
* 1 2

2 2
1 2 3

(1 )
2 (1 ) (1 )

n n n
n

n n n n

w v v v wv
w v v v w w v

 


                                      (1)

Where, the denominator is the average fi tness [43]. If a B1 
gene mutates to a B2 gene with rate γ1, and a B2 gene mutates 
to a B1 gene with rate 2, then the expected B1 gene frequency 

in adult individuals is 
* *( ) (1 ) (1 )1 2v v vn n n       [40]. The 

rate of forward mutation B1→B2 is sometimes greater than the 
rate of reverse mutation B2→B1 [30]. I considered stabilizing 
the selection process and heterozygote intermediate (no 
dominance) gene action. The coeffi cient of selection for B1B1, 
B1B2 and B2B2 genotypes is 1 = 1- w1, 2 = 1- w2 and 3 = 1- 
w3, respectively. Fitness is only related to the genotypes of 
individuals. It was assumed that  = max (|1|, |2|, |3|, 1, and 
2) such that 0 0  < < 1 was a small nonrandom variable since 
1 and 1 belonged to the systematic genetic factors [43].   

It is supposed that the birth rate (b) is infl uenced by 
fi tness, coeffi cient of selection, the size of the population, 

and mutation. Without considering the fi tness, Moran [41] 
and Dunham [42] suggested a formula to calculate the 
birth rate. According to Eq. (1), their formula is corrected as 

 2* * *
1 2(1 )(1 ) 1 ( )n n nb v v v      where b is the birth rate 

of the population with the B1 allele. If the size of the population 

N is large, then the mutation rates are trivial. Thus, 01 2   , 

such that * * * * 2(1 ) ( )n n n nb v v v v    . 

Environment model development   

For simplicity, I considered the environmental random 
variables responsible for the gene frequency fl uctuation and 
producing random white noise. This random white noise affects 
the transmission of genes from parents to offspring in the 
population [36,37]. Therefore, Z = Z(t,x) is standard Brownian 

motion (the Wiener process) and  ( , )Z Z t x  or ( , ),Z Z dt dxt x 

is the time-space derivatives of the Brownian sheet determined 
as a generalized random parameter in ()* which is the space 
of Hida distributions [32,44,45]. For (0,1]  , ()* and () are 
the spaces of Hida and Kondratiev test functions, respectively  
[34]. In this paper, i (t,x) is equal to the time and space white 

noise or polynomial noise, i.e. i (t,x) = ( , ),Z Z dt dxt x  . 

Main Theorem (Theorem 1)   

In the Wright-Fisher genetic model, let the random variable 

 0,1vn  be the frequency of the B1 gene. If the random habitat 

where alleles spread out changes quickly, then in genes with 

additive effects, the diffusion approximation  0,1v satisfi es  

2 (1 ) 0 ,
(0, ) ( )0

v v v v v vxxt Z t x R
v x v x

      








where ( , )Z Z t x  considers white noise. 

Lemma 1

In the Wright-Fisher genetic mode, let  
NVn = vn be the 

frequency of the B1 genes in the group of adults at generation 

n. If N N→∞ and  N→0, then N
nV → Ƹn

N where Ƹn
N = v(t) is the 

frequency of the B1 genes in the Haldane genetic model.

Further details can be obtained from Norman [37].  

Modeling Haldane gene frequency via the diffusion 
equation    

Let’s investigate the modeling of Haldane gene frequency 
Ƹn

N = v(t) based on the one-dimensional diffusion equation in a 
fi xed and homogeneous environment.   

Lemma 2

If v = v(t) is the frequency of  the B1 gene in Haldane genetic 
model and the population spreads out steadily in a stable 
environment, then the B1 gene frequency, i.e. v = v(t,x) is the 
solution of  vt = vxx + f(v).
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Further details can be obtained from Aronson & Weinberger 
[46]. 

Lemma 3

If f(v) specifi es as 

 ( ) (1 ) ( ) (1 ) ( )1 2 3 2f v v v w w v w w v      , then in 

genes with additive effects, f(v) = v(1-v) = v-v2.

Further details can be obtained from Aronson & Weinberger 
[46]. 

We have  0,1v  , f(0) = f(1) = 0 , f´(0) > 0 and f(v) > 0. 

So, if the diffusion occurs in the case of additive effects of the 
genes, then for the fi xed habitat the frequency of the gene in 

the Haldane genetic model is the solution of vt = vxx + v – v2 that 

is Fisher or KPP equation. Also, refer to lemmas 2 and 3. The 
complete form of the KPP equation is [32].

2
0 ,

(0, ) ( )0

u u u uxxt t x R
u x u x

  
 





                                                                                               (2)

Lemma 4 

If the random processes of the habitat change quickly 
and uniformly in time and one-dimensional space, then the 
sampling variations coincided with the vector of variables that 
defi ne the habitat will be very similar and in reality identical to 
the time and space white noise. 

Further details can be obtained from Benth, Deck & Potthoff  
[34]; Lee [45]; White  [36], and Norman [37]. 

Here, the model of population genetics with white noise 
calculus is reformulated. Therefore:

Lemma 5

If (0, ) ( )0v x v x is a continuous function that retains 

value in [0,1] as for given constant  c > 0,

(P1)   0 ( )v x =1      for    x < -c

(P2)   0 ( )v x =0      for    x > c

then, there is an inevitable measurable solution v = v(t,x) 
in a -fi eld Ʊn , 0 ≤ v(t,x) ≤ 1 that satisfi es the next stochastic 
partial differential equation

2 (1 ) 0 ,
(0, ) ( )0

v v v v v v zxxt t x R
v x v x

      








                          (3)

Further details can be obtained from Shiga  [47] and Mueller 
[48].

Therefore, based on the lemmas 1 to 5, the theorem 1 
confi rms.   

Software    

Maple software ver.18.01 (Maplesoft, a division of Waterloo 
Maple Inc. 1981-2014); Wolfram Mathematica software 
ver.11.0.0.0 (Wolfram Research Inc. 1988-2016) and MATLAB 
software ver.R2017a 9.2.0.538062 (The MathWorks, Inc. 
1984-2017) was used to solve the equations and develop the 
graphs. MathType software ver.7.4.2.480 (WIRIS America, 
Design Science, Inc. 1990-2019) was also applied for typing the 
equations and formulae.   

Results 

Analysis of the mathematical model    

I showed that the mathematical model in theorem 1 belongs 
to a general model, and explained how to analyze the model. It 
is emphasized that the modeling of genetic phenomena by the 
Cauchy problem has possibly not a usual global solution, thus 
most of the time, the qualitative behavior of the solutions is 
considered. Some researchers use modern techniques to acquire 
the statistical information about the behaviors of the genetic 
systems at a determined time and space since there is not a 
satisfying existence and uniqueness theory for the solutions 
of the Cauchy problem and the stochastic partial differential 
equations [20,32,33].           

General class of the mathematical model in theorem 1    

The general class of the mathematical model in theorem 1 is 
explained as the next category of Cauchy problems 

( ) ( )

(0) 0

Q E J
t




      


  




                                         (4)

Where Q is a second-order differential operator on 1dR  , 


 
is a noise component, E, and J are probably nonlinear functions 
of the solution   and   denotes the Wick product [34]. Eq. (4) 
appears in Mathematical Physics [49]. The solutions of Eq. (4) 
are generalized random variables in the spaces ( )    relying on 
the time and space, hence ( )   . 

For  0,1 and 0p N , the space ( ) defi nes as the 
projective limit of the Hilbert spaces ( )p

 . Also, for (0,1]

, ( )   calls the spaces of Kondratiev distributions. The Wick 

product of two elements and ( )      defi nes [34]

1: ( )                                                              (5)

Where in Eq. (5),   is  -transformation and   is 
the smooth test function of time and space [34,38]. The 
generalizations of ItÔ integral are defi ned as the integrals of 
Wick products of random parameters and noise components. 
The regularity of test functions performs an important duty 
in white noise analysis, so Cauchy problems in Eq. (4) bring 
to the fi xed-point problems inappropriately formed Banach 
spaces[44,45].  

In Eq. (4), Q defi nes as 
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     
2

, , ,1, 1 1

d d
Q a t x b t x c t xij ii j ix x xi j i

      
   

              (6)

Where,    , , : 0, ,0dt x D D T R TT T     , and d ≥ 1. 

The functions ija


, ib


 and 1c


 are continuous on DT such that 

they satisfy a consistent HÖlder condition in
dx R , steadily 

in  0 ,t T .

Now, consider the below stochastic Cauchy problem

           

   

, , , , ,

0, 0

t x Q t x E t x J t x t x
t

x x




      

  




   (7)

Where, E and J are mappings from  TD
  into     for 

some  0,1 , and  , Tt x D , respectively (Benth, Deck, & 
Potthoff, 1997). In Eq. (7), (t,x) defi nes as a d-vector of time 

and space noise, so 1,..., d  
  

   
 

. Furthermore, 

         , , , ,
1

d
J t x t x J t x t xii xi

 


     
 

             (8)

     
~

, , : , ,t x t x t s x y Z dydst yi iR dR
      

   (9)

Where, in Eq. (9), 
~
 and i are the time-space white noise. 

The noise component (t,x) in Eq. (7) can separate into two 
groups known as polynomial and non-polynomial noises [34]. 

Let’s show the solution of Eq. (7) as a fi xed-point integral 
equation, i.e. 

         

      

      

, , ;0, , ; , ( , )0 0

, ; , , ,
10

, ; , , ,

t
t x y g t x y dy g t x s y E s y dyds

d dR R
t d ig t x s y J s y s y dyds

i ydR i
t

g t x s y s y J s y dydsyo dR





      


    

 

     
 (10)

Where,    , 0, ds y t R  , and g(t,x; s,y) is the fundamental 

solution of the heat equation. Refer to Benth, Deck, and Potthoff 

(1997) [34] to study the precise conditions on 0 , E, J, and  . 

The next equation is a special case of the Eq. (7) in one-
dimension [48]:

   
   

0 ,
0, 0

v v h v i v zxxt t x R
v x v x

    








                             (11)                                                                              

The integral equation below is the solution of Eq. (11)

     
    

      

, , 0

, ,0

, , ,0

v t x K t x y v y dyR
t K t s x y h v s y dyds
R
t K t s x y i v s y Z dy dsR

 

   

   
                  (12)

Where,    
2

1
42, 4
x
tK t x t e



  is the basic solution of 

the heat equation t xxv v on x R . The fi nal integral in 

Eq. (12) defi nes through Walsh’s [50] theory of integrals and 
martingale measures. 

If  1 2 3 1 2  max  ,   0,   ,  and        , 

i.e., if there are no mutations and no environmental selections 
such that wi = 1, thus ( ) 0f v  in lemma 3, and the Eq. (3) in 

lemma 5 reduce to t xxv v . Here we have 

     0 ,
0, 0

v vxxt t x R x
v x v x


    







Also, the solution of Eq. (3) in Lemma 5 based on the 
integral Eq. (12) is

     

      

         

0

2

0

0

, ,

, , ,

, , 1 , ,

R
t

R
t

R

Z

v t x K t x y v y dy

K t s x y v s y v s y dy

K t s x y v s y v s y dy ds

 

   

   



 

 
                 

               (13)

Since the Eq. (3) in Lemma 5 is of the reaction-diffusion 

equations, in the Eq. (9) we have  
~

,, t xZ Zt x  


 [34]; 

therefore, in the Eq. (3),  
~

,Z t x


. Now, the fi nal integral 

on the right-hand side of Eq. (13) is denoted by  ,t x  
[32], thus

           
0

, , , 1 , ,
t

R

Zt x K t s x y v s y v s y dy ds     
     

                  (14)

Where    
~

, ,Z dy ds t x .

In Eq. (3), v  is replaced by a function v


 to be easier to 

analyze. So, let v


satisfy 

   0

1 1 1
0 ,

0,

xxtv v v v v Z
t x R

v x v x


    

 

                     


 



             
               (15)

Note that v


may exceed 1, so 1v


  is needed. An integral 
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equation is derived v


in the same way as the integral Eq. (12) 
has derived

       0, , ,tv t x e K t x y v x dy t x
 



  
                              

              (16)

Where 

     

     

0

, ,

, 1 1 , 1 ,

t
t st x e K t s x y

v s y v s y Z dy ds

 






 

  

               

 

       (17)      

There are a pair of solutions    , , ,v t x v t x
 

  
 to Eqs. (3) 

and (16) such that, inevitably    , ,v t x v t x


 for all 0t 
, x R and  0 , 1v t x   [32]. In population genetics, 

the study of the behavior of v(t,x) for large values of x reveals 
that the state space can enlarge enough to include fi nite sets 
of paths defi ned up to time t. As the result, the small sets of 
alleles omit quickly. In other words, if v(t,x) is far from 1, then 
v(t,x) dx behaves like a super-Brownian motion and small sets 
of alleles omit in a fi nite time. Since some ovf the mutations 
are fatal, the frequency of alleles that have undergone the 
fatal mutations decreases quickly for large x. It is reminded 
that super-Brownian motion has a density, satisfying 

1
2

t xx Zv v v 


in one dimension [22,33,49], that is similar 

to the Eq.)3( when v is small.

Stationary situation    

The stationary phase appears in the stochastic partial 
differential equations that use to study population genetics 
and statistical mechanics. In population genetics, the traveling 
wave solutions use to study the propagation velocity of 
perturbation in one-dimensional diffusion equations in the 

equilibrium. Therefore, in Eq.) 3(,    ,      v t x f x mt  is a 

traveling wave solution [46]. Since v is a random variable with 

Markov property,    f x mt is a random traveling wave for 

Eq. )3(.

The model shows that if v is close to 1, then the perturbation 
forms, i.e., v(t,x) = 1 are not stable. If the process starts by 

 0 1  v x  (condition P1 in lemma 5), then some of the alleles 

will transfer to the next generation but some others will change 
to the mutant alleles and therefore will omit. But if t  , 
then the frequency of the B1 allele in the intermediate region 
with fi nite length tends to the stationary situation and the blob 
will spread with a non-random limiting speed. This case is 
similar to the hair-trigger effect [46] 0v  .     

According to the conditions defi ned  , the stationary 

phase occurs, but for example, if max ( , ) 1i i    , then 
the stationary situation does not happen. Higgs [51] studied the 
multi-locus diploid genetics models with epistatic interactions 
in sexual, parthenogenetic, and selfi ng populations including 
the fi tness landscape without diffusion and white noise. As a 
result, he showed that the stationary distributions occurred in 
his genetic model.   

Shiga’s stepping stone model    

Shiga (1988) introduced the stepping stone models in 
population genetics as a dual process for

   

1
2

2

0

0 ,
0,

t xx Zv v v v v t x R
v x v x


     
 



                         (18)

This is a system of branching Brownian motion in which 
the particles coalesce at a Poisson rate based on the local time 
between pairs of particles. In this case, Poisson white noise can 
be created (Shiga, 1988). The Eqs. )18( are analogous to our Eq. 
(3) in Lemma 5.  

Haldane genetic model with no spatial spreading of the 
population    

Suppose that the spatial spreading of the population in 

the Haldane genetic model is trivial, i.e., 0xxv   in Eq. )3(. 

Therefore, in this system of interacting species in a random 
habitat, the stochastic process is governed by the stochastic 
differential equation as follows

   1 tZ
dv v v L v
dt

                                                (19)

where v = v(t) is measurable concerning a -fi eld Ʊn
N 

and satisfi es the stochastic differential Eq. )19( in which v 
is the diffusion approximation of frequency of the B1 allele, 
and Zt is Gaussian white noise. Here L(v) is approximated by 

  11
2

v v     . Also,  multiplied by the covariance of 

Gaussian white noise is called the effective noise strength. 
Eq. )19( is similar to the systems of interacting species in a 
stochastic habitat presented by White (1977). It is supposed that 
the rates of environmental changes are quick. But if 0 1 
, then the effective noise strength is small in this model. In 
a such case, the results are supported by the assumption of 
tiny white noise. Therefore, Eq. )19( is a stochastic model to 
evaluate the frequency of B1 allele under additive gene effect 
or heterozygote intermediate with white noise but without the 
spatial spreading of the population. This case was proposed by 
Falconer and MacKay (1996) but without white noise analysis.      

Discussion 

Comparisons of the equations    

a) xxv term in Eq. )11( is the particular case of Q  in Eqs. 

)4( and )7( where Q has defi ned in Eq. )6(. 
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b) h(v) term in Eq. )11( is the especial case of  E  in 
Eqs. )4( and )7(.

c)   Zi v


term in Eq. )11( is the special case of 

 
_

J    , and     , ,J t x t x    in Eqs. 

)4( and )7( respectively, where the complete equations have 
presented in Eqs. )8( and )9(. 

d) Based on a, b, and c above, the Eq. )11( are the particular 
case and one-dimensional form of Eqs. )4( and )7(.

e) Eq. )12( is the special case and one-dimensional form of 
Eq. )10(.

f) The main equations of this paper, i.e. Eq. )3( in lemma 
5 are the special case of Eq. )11( where h(v) = v-v2, and 

( ) (1 )i v v v  .    

Biological meaning and implications of the equations   

I showed that if the environmental random processes in the 
Haldane genetic model changed quickly and smoothly, then in 
the case of additive gene effects, the diffusion approximation 
of the allele frequencies in the birth and death processes could 
be modeled and analyzed by a stochastic partial differential 
equation, i.e., Eq. )3( in Lemma 5, where the solution is 
presented in Eq. )13(. Norman [37] derived a Gaussian diffusion 
process under the selection, random genetic drift, and mutation 
conditions with large N that fulfi lled the Wright-Fisher genetic 
model and identifi ed with Haldane,s gene frequencies. Almost 
simultaneously, McKean [33] had shown the application of 
Brownian motion to these equations and genetic models, 
including a proof of the theorem of Kolmogorov-Petrovskii-
Piskunov. Also, Mueller and Sowers [32] studied the stochastic 
partial differential equations and their applications to genetic 
models including genes with additive effects. 

By replacing v  with a function v


 to be simple to analyze, 
Eq. )16( was derived. These implied that if v(t,x) behaved like a 
super-Brownian motion, and if the fatal mutations took place, 
then for larger values of x, v was far away from 1, and a tiny 
group of alleles disappeared quickly. Also, if v(t,x) is close to 1, 
then v is not stable, and t   the frequency of the B1 allele 
in the intermediate region tended to the stationary situation 
according to the stabilizing selection conditions  . Jensen [14] 
solved a partial differential equation for additive viabilities for 
heterozygote genotypes under the selection pressure. But in the 

current work, if max ( , ) 1i i    , then the stationary 

situation did not take place. Therefore, the stationary state 
of the frequency of the B1 allele in the case of heterozygote 
intermediate was a result of the stabilizing selection. Nagylaki 
[15] studied the evolution of a monoecious, diploid, diallelic 
locus population under some conditions without dominance 
effects and obtained a diffusion problem for the gene frequency 
and its correlation with the environment. For a mutant alone, 
Bürger and Ewens [16] confi rmed the diffusion estimate for 
the fi xation probability. Also, exact equations were derived by 
Ethier and Nagylaki [38] for the stationary distributions with 
soft linkage.

I showed that with no mutations and no habitat selections, 
the equation will be as follow

 1 2 3 1 2  max  ,   0,   ,  and         

, then ( (1 ) ) 0v v z  


, and if wi = 1, then 

 1 2 3 2( ) (1 ) ( )(1 ) ( ) 0f v v v w w v w w v       . 

Therefore 

  1

1
v t te

   

I solved the above system using Maple 18.01 

with pdsolve and pdetest commands and I obtained   

 
 11 311, 1 2 ,

 1

C tC xC t C e C
v t x C e C e

C x
e

      , after 

applying the initial condition, 0v (y) = 0.5 , and some 

mathematical calculus. Therefore, the gene frequency 
distribution of the B1 allele was

   
 2

4
0

1,
2

x y
t

R

v t x v y e dy
t




                          (20)

Therefore, the 3D plot for the above gene frequency 
distribution was presented in Figure 2:

In Theorem 1, if ( , ) 0t xZ Z 
 

, i.e., no white noise, then 
for the fi xed habitat, the frequency of the gene in the Haldane 
genetic model will be estimated by solving vt = vxx + f(v). 
Therefore, the complete form of the KPP or Fisher equation 

[32] was derived for genes with additive effects in which f(v) 
= v(1-v) = v-v2 (See Lemmas 2 and 3). Finally, I derived the 
following deterministic form 

Figure 2: Plotting Eq. )20(. Commands and parameters in Maple 18.01: plot3d(v, 
x=-10..10, t=0..10).    
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2

0

0 ,
(0, ) ( )
t xxv v v v

t x R
v x v x

     
    

The above system was again solved by Maple 18.01 with 
pdsolve and pdetest commands and after applying the initial 
condition, v(0,0) = 0.5 , and mathematical calculus, the 
following equation was obtained

 
2

1 5 1
, tanh 6 0.4406867935

4 12 12

1 5 1 1
tanh 6 0.4406867936

2 12 12 4

v t x t x

t x

  

   

 
 
 

 
 
              

                (21)

The 3D plot for the above gene frequency distribution of the 
B1 allele is presented in Figure 3:

Wright [6,8] considered a population under mutation 
and selection pressure conditions and derived a formula for 
an equilibrium distribution that emerged from the random 
fi xation of the genes; and with no selection pressure, the 
average frequency of heterozygote genotypes was correlated to 
the size of the population.    

Thus, the traits that tolerate the stabilizing selection 
presented a different structure, namely, there was no 
dominance effect. In this case, if the dominance effect existed, 
it might be ambidirectional i.e., in different directions [40] 
although the epistatic effect did not mainly take place. The 
above system of partial differential equations belonged to a 
special case of random Cauchy problem in Eq. )7( where the 
solution at a fi xed point integral equation was shown in Eq. 
)10(. Beforehand, Maruyama [5] had acquired the backward 
and forward Kolmogorov equations to study the frequency 
of genes and showed that the stochastically converting 

gene frequency to a random walk was not dependent on the 
geographical construction of the population. Dakua and 
Sahambi [52] presented a method using a heat equation with 
a variable threshold technique for seed selection in random 
walk-based image segmentation. On the other hand, Dakua 
and Sahambi [53] used a random walk approach for automatic 
left ventricular contour extraction from cardiac magnetic 
resonance images. To extract the blood pool boundary or 
endocardium, Dakua and Sahambi (2014) used a random 
walk model. Besides, Dakua [54] presented a semi-automatic 
algorithm that utilized the noise for enhancing the contrast of 
low contrast input magnetic resonance images followed by a 
new graph cut method to reconstruct the surface of the left 
ventricle. Also, a semi-automatic graph-based approach was 
used for image segmentation by Dakua [55].  Illner and Wick 

[38] studied the statistical and measure-valued solutions of 
differential equations with non-uniquely solvable Cauchy 
problems describing super-Brownian motion. He showed 
that the classical solution theory was a generalized statistical 
solution idea.  

Various types of gene actions were a result of diverse 
selective forces. Haldane [4], Fisher [17,18], Wright [8], and 
Kimura [9] declared that any progress or defeat of a mutant 
gene was related to both chance and selective forces. Therefore, 
the emergence of the dominance and epistatic effects was 
because of the directional selection acting on a trait, and the 
stabilizing selection highly enforced the additive variation in 
the heterozygote intermediate case. Schneider, Baptestini, 
and deAguiar [11] studied the dominance and codominance of 
diploid genomes and explained that their neutral speciation 
models estimated the same frequency distributions. The 
stepping stone model as a system of branching Brownian 
motion with a Poisson white noise was defi ned in Eq. )18( that 
was a dual process and had some similarities with the theorem 
1. 

Eq. )19( (a special case of Eq. )3() indicates a model to study 
the diffusion approximation of frequency of the B1 gene in 
Falconer and MacKay’s [43] equation in the case of heterozygote 
intermediate with white noise. This case is the Haldane genetic 
model with no spatial spreading of the population in which the 

effective noise strength is defi ned as cov (Z )t   Malliavin 
[35]. If we rewrite Eq. )19( as

( ) (1 ) ( ) (1 ) tZd v v v d t v v d                                         (22)

Then according to one-dimensional Itˆo diffusion processes 

and Feynman-Kac theorem, v ( 1 v )  is called the drift 

function which is deterministic, and (1 )v v  is called 

the stochastic diff usion function [56]. Here, the drift and diffusion 
coeffi cients are nonlinear. Eq. )19( is arisen in biology and 
especially in population genetics (Ewens, 2012). If tz 0
in Eq. )19(, i.e., if there were no stochastic processes, then the 

deterministic form of Eq. )19( would be  1dv v v
dt

   Therefore, Figure 3: Plotting Eq. )21(. Commands and parameters in Maple 18.01: plot3d(v, 
x=-10..10, t=0..10).
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it was solved by Maple 18.01 with the dsolve command. After 

applying the initial condition, v(0) = 0.5 , and mathematical 

calculus we had

  1

1
v t te

                 (23)

Here, the 2D plot for the B1 allele frequency distribution, i.e., 
Falconer and MacKay’s [43] equation, was presented in Figure 
4:

Understanding of qualitative behavior of the solutions 
and quantitative solutions of stochastic partial differential 
equations are the most demanding aims of their mathematics. 
But, as explained before, the qualitative behavior of solutions 
of the stochastic partial differential equations had usually been 
considered. Eq. (19) (or its equivalent Eq. (22)) as an Itô process, 
is solved and sample paths of this stochastic differential 
equation are simulated through Wolfram Mathematica 11.0.0.0 
using the Euler-Maruyama solver. For example, only the 
diffusion approximation of v(t) based on two hypothetical 
stabilizing selection conditions on  ( = 0.25 and  = 0.4), for 
the initial condition, v(0) = 0.5 , are shown in Figure 5. 

If  → 0, i.e. if the rates of mutation and selection become 
very small, then the model would be more deterministic and 
predictable. On the other hand, if  → 1, i.e. if the rates of 
mutation and selection become large, then the model would 
be more stochastic, and more fl uctuations occurred because of 
the strong effective noise strength. In this case, the stationary 
situation did not take place. Dakua et al. [57] denoised image 
sequences modeled by Brownian motion of particles placed in a 
double-well potential system.  

I developed a MATLAB R2017a 9.2.0.538062 program to 
numerically solve the equation of the main Theorem (Theorem 
1) of this work. Therefore, we have  

2

2

0

( ) ( ) for 0 , 0 and 0.25
(0, ) ( ) 0.5

v v f v f v z t xt x
v x v x




 
          

               
                (24)

In Eq. (24),  ( , ) 0,1v v t x  , drift function is defi ned 

as 2f ( v ) v v  ,  f(v) > 0,  f(0) = f(1) = 0, f´(0) > 0, diffusion 

function is defi ned as ( )f v  , and ( , )z z t x is 

considered as Wiener process [58]. 

Using the MATLAB software, Eq. (24) can be numerically 
solved for any values of t, x, and . Just as an example, if 
 = 0.25, t = 1 and n = 1000 then we have some outputs for 
Eq. (24) like 3.24932908120224e-06, 6.49545146689758e-
06, 9.73516362620046e-06, 1.29652683543448e-05 and 
1.61825779279393e-05, and the related sample paths is shown 
in Figure 6. Some special cases of Eq. (24) have applications in 
supper-Brownian motion studies too [58].  

Unsolved issues

More researches and model simulations are necessary to 
perform in order to complete the subject discussed in the present 
study as well as the models with small population size, asexual 
mating, nonrandom mating, polyploid population, migration, 
tiny birth rate, and also moderate and high mutation rates. The 
different degrees of dominance effects and epistatic effects 
have to consider along with the polyallelic loci, and polygenic 
inheritance. On the other hand, since the fi tness of the genotypes 
is not usually fi xed and correlates with the other variables, it 

Figure 4: Plotting Eq. )23(. Command and parameter in Maple 18.01: plot(v, t=0..10).

Figure 5: Plotting the sample paths of Eq. (19) (or Eq. (22)), only for two hypothetical 
conditions on θ. Command and parameters in Wolfram Mathematica 11.0.0.0:  proc 
= ItoProcess, t = 0 to10, Minimum increment: 0.01, Resampling: Linear interpolation.

Figure 6: Plotting the sample paths of Eq. (24). Commands and parameters in 
MATLAB R2017a 9.2.0.538062: only for θ = 0.25, t = 1 and resampling (n) = 1000. 
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is valuable to study the mathematical modeling of the fi tness 
in more detail accompanied by evaluating the heterogeneous 
environments. Since the diffusion approximation of the gene 
frequency based on the Haldane genetic model under the 
conditions of heterozygote intermediate (additive gene effects) 
in a birth and death process in a random environment was 
studied in this work, changing the conditions in this model 
leads to more new situations that need to be studied in-depth. 
Therefore, more complexities will be probably the potential 
limitations of the current research.   

Perspectives of the higher-level research  

Under natural conditions, the selection increases the 
fi tness of the species and acts to adapt the species to 
new environments in the form of directional selection. In 
populations and communities with sexual reproduction and 
intergenomic epistasis, the traits such as fertility and viability 
affect the fi tness of the animals and plants. Therefore, the 
selection will be directional about the maximum expression of 
the suitable genes.  

It is important to consider the higher level of studies, i.e. 
the mathematical modeling of gene interactions among species 
in community genetics [59]. Thus, the classic genotype × 
environment interaction (G×E) model must assess the higher-
order interactions as the genotype × genotype × environment 
interaction (G×G×E) models, i.e., the interspecifi c interactions 
[60]. Since the interrelationships between the specifi c genes 
and ecosystems are not clear, it is crucial to mathematically 
analyze the related problems in population and community 
genetics. Also, it is necessary to consider the modern marker 
technologies for DNA-RNA sequencing, comparative genomics, 
and molecular eco-evolutionary genetics [61].    

In the present study, I aimed mathematical modeling and 
analysis of the Haldane genetic model under Brownian motion 
using a stochastic differential equation, but there are rich and 
attractive problems in eco-evolutionary community genetics 
to investigate the indirect genetic effects via the systems 
of stochastic partial differential equations and white noise 
calculus [62-64] in which the phenotype of an organism is 
part of the habitat of another organism. It may result in the 
emergence of a fascinating interdisciplinary scientifi c branch.

Final suggestion

It is proposed that the researchers integrate the predictions 
of the mathematical modeling of natural populations with 
the results of experimental designs including practical and 
empirical laboratory and fi eld studies to increase the accuracy 
of the models and their outcomes.    
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