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The drag force in a gas (previously derived by Stokes and Rayleigh) is derived by means of the molecular kinetics (transport equation of the momentum). Two regimes
of resistance to motion are identified, governed by the relation of the velocity to the thermal (molecular) velocity. They correspond to the molecular movement, for small
velocities, or to the hydrodynamic motion for high velocities. In the former case sound waves are not excited, and energy is dissipated by viscosity (friction), while in the
latter case the energy is dissipated by the excitation of the sound waves. Also, the treatment is applied to the plasma. It is shown that in usual plasmas it is unlikely that

the body motion excites plasmons.

The drag force is well known in fluid mechanics [1-5]. For
small velocities (small Reynolds numbers) it is proportional
to the velocity of the body moving through the fluid (Stokes
force), while for larger velocities (higher Reynolds numbers)
it is proportional to the squared velocity (Rayleigh force). In
the former case, the energy is dissipated by viscosity, while
sound waves (including shock waves) are excited in the latter
case. In potential flow, the fluid mechanics predicts no drag
(d’Alembert paradox). In viscous fluids, the Stokes law implies
the boundary-layer theory. We give in this Note a derivation of
the drag force by means of molecular kinetics, which provides
a unitary treatment and avoids the difficulties of the fluid
mechanics (d’Alembert paradox included).

Let us consider a plane solid surface (solid body) placed
vertically in the y,z -plane and moving horizontally with
velocity v>0 along the x-axis through an ideal classical gas.
The energy and momentum conservation laws for an elastic
collision of the surface with a gas molecule are

" "

2 2 2
My +myy = Mv +mvy,

Mv+mvx = My +mvy,

(1)

where M is the mass of the body, m is the molecular mass, v‘
is the velocity of the body after the collision, and v_,Vv, are the

molecule velocities before and after the collision, respectively.
We assume that the collisions along the y,z -directions are
balanced, such that they do not change the states of motion.
Also, we note that the velocities in equations (1) are algebraic
(with their sign). From equations (1) we get

v l-m/M 2m/ M
v = v+ v
l+m/ M l+m/ M
' 2 1-m/ M
y, = V- V...
Y lemiM vemim T 2)

The momentum (AP) and energy (AE) changes for the body
are

AP:M(V'—V):— (v-vy),

l+m/ M

2m(v—v m
2mOmv) fom

Aam/My>\ M "

AE = lM(v'2 —v2) =-
2 3)
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Let us consider now those molecules with velocity v <0 along
the x-axis. These molecules collide with the body, on the right
side (x>0). The number of collisions per unit time and the unit
area is n(v-v,), where n is the gas density. It follows that a force

2mn

per unit area Py =AP-n(v-v,)=- (v—vx)z,vx <0 (4)

l+m/ M
occurs on the right side of the bodyj; it is directed along with
the negative x-axis. If we average this force over all velocities
v, <0, we get the corresponding pressure. Let us consider now
the molecules with velocity v, >0. For v, >v, they collide with
the body on the left side; the number of collisions per unit time
and the unit area is n(v -v). If v _<v, the body collides with these
molecules on the right side; the number of these collisions per
unit time and the unit area is n(v+v,). It follows that we get the
pressure

2mn )
Py = Vy —V) ,V, >V,
2 dimiM *
2mn
Py =P v, 0 <y, < v,
l+m/ M (5)

where the average must be taken over the values of v which are
indicated in each row of equations (5). These averages imply
truncated integrals of Gaussians. It is convenient to estimate

the pressure in two distinct cases: v<<v, and v>>v,, where

we take for the thermal velocity Vi = (T/ 27Tm)1/2 , T being

the temperature. For v<<v, we may neglect the second raw in
equations (5), such that the total pressure is given by adding
the first row of equations (5) and equation (4). We get

8mn - 0
p—vvx,v,. >0 v Ly, .
l+m/ M . th (6)

In the second case, v>>v,, we may neglect the first row in
equations (5) and add the second row and equation (4) to get
the total pressure

4mn 2 - 4mn "
p——mm|Vv +vvy | X ——m ,Vx>05V>>Vth~
l+m/ M l+m/ M
(7)
The final result is
8mn
p—————— v, vV,
l+m/M " th
2mn 2
p——vV ,v>>vth.
l+m/ M (8)

We can see that in both cases a drag force occurs (opposite
to the direction of motion). An interpolation formula is

2mn

2
p:’—i(v +4Wth)‘
1+m/M 9)

We may neglect the ratio m/M in the denominator of

equation (9) and replace mn it with the mass density p; for
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a macroscopic body the force implies the area A of its cross-
section, such that, for small velocities the drag force is

F~ 78pvthAv; (10)

for a small body with dimension r the effective area is reduced
by transverse collisions to 5A=r4, where « is the mean free
path and the force becomes F ~ —8pAv,, rv; the product pav,,
is the viscosity n, such that the force is ~ —8,7v, which is

approximately Stokes’ formula [2] -67ryv for a sphere of radius
r. For high velocities, the formula was derived by Rayleigh by
means of the fluid dynamics [7]. It is worth noting that the

pressure p ~ -2 ,ov2 given by equation (8) v>>v, is four times

1
larger than the hydrodynamic pressure — pv2
2

The drag force is derived here by using molecular kinetics
(equivalent to transport equation with a macroscopic velocity
v); the transported quantity is momentum. If we leave aside the
molecular velocities, as for microscopic, but large, amounts of
fluid, we may get Euler’s equation of motion of fluids (Navier-
Stokes equations). This was the original approach of Stokes
(who used the empirical viscosity) and Rayleigh. Further on, for
low velocities, from Euler’s equation, we may get the Navier-
Cauchy equations of elastic motion. For low velocities these
equations predict sound waves, in particular the hydrodynamic

sound, with velocity ¢ = /¢ T /c,m in an ideal classical gas,

where ¢, are specific heats at constant pressure and volume,
respectively. We note that c is close to the molecular thermal

velocity ~~7/m . Sound is a collective excitation, which

implies local thermal equilibrium, but not a global equilibrium:
the pressure, the density, and the temperature vary on a global
scale (it is a mechanical motion compatible with the statistical
motion; the sound is not a transport phenomenon).

Let us examine first the case v<<v,. Let us assume a local
displacement u in the gas; we assume that it is sufficiently
small to produce a small pressure imbalance 6p; since u<< a this
imbalance is adiabatic, i.e. the molecules do have not enough
time to collide with each other. This displacement produces

a small density imbalance Jp = —pdivu. According to Euler’s

1
equation ii = —— graddp , we get

p
62u 1( op op
T (—pgmddivu) =| — | graddivu,
ot P\Op ) op )

(11)

which is the equation of sound propagating with velocity given
by 02 = (6p / 8p)s , where the suffix S means constant entropy
(S). Since (ap/ap)s = =, /Cv)(ap/ap)T, we get the

sound velocity given above (where). This is the hydrodynamic
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sound in an ideal gas. Since it is collisionless, it follows that it
cannot be excited by the motion of the body through the gas, as
long as v<<v,. In particular, the density variations produced by

pc, T

the sound are 6p = cz(Sp = —pczdl’vu =- divu , while the

c,,m

v

pressure variation given by equations (8) is dp = -8p v.

27rm
This latter pressure does not produce variations of the density.
The sound is a local-equilibrium phenomenon, while the drag
force is caused by friction (viscosity), which, on its short scale,
is a non-equilibrium phenomenon. The drag force dissipates
energy, by mechanical work, which, per unit time, can be
computed from the lost energy given by equations (3).

The situation is different in the regime v>>v,; in this case,

the body generates variations of the density, and, therefore,
excites sound waves. It is worth noting that the pressure

-2 pv2 given by equations (8) in this case does not depend on

V,» as if the molecular movement would be immaterial. This is

the hydrodynamic regime. Indeed, let us assume that Vh(r) is
the characteristic function of the body, where V is the volume of
the body; the characteristic function of the gas is f(r)=1- Vh(r).
For a pointlike body, we can take h(r)= §(r). We are interested
in the variation Jf of this function due to the movement of the
body, i.e. the variation of the function f(r-vt)=1-Vh(r-vt), where
t denotes the time. The variation JF of any quantity F associated
with the body is given by ¢F=Fsf. The variation of this function

can be written as & = Vvgradh(r — vt)St . As long as v<<v,, the

time ot is much longer than the mean collision time 7, such that
the equilibrium is restored rapidly, and the variation ¢f is zero.
If v>>v, the time Jt is much shorter 7, we have an estimate

S f = Vrvgradh(r — vt) for the variation Jf. Therefore, we have
a variation of the pressure §p = —(2 pvz Wrvgradh(r — vt) and

a variation of the density
op = pVrvgradh(r — vt) = pVrdiv[vh(r — vt)]. (12)
Since 8p = —pdivu , where u is the displacement associated
with the density variations, we get the displacement

u=-Vrvh(r —vt); (13)
obviously, this displacement satisfies the equation

82u 2
at—z—(vgmd) u=0, (14)

or

Pu_ 2ot
6t2 8r2

=0, (15)

where u and r are directed along with the velocity v (and u
is restricted to the cross-section of the body); this is a shock
wave. Due to the equilibrium movement, the thickness of the
tail increases in time with velocity v, /u. The displacement u
can be expanded in a Fourier series
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1 i(Kr—
u=-Vrv 3 jdkh(k)el(kr kvt) ,

27)

(16)

which shows that the disturbance is a superposition of sound
waves with frequency w=vk =c(v/c)k; since the wavevector is
localized over a range Ak ~1//, where [ is the dimension of

the body, it follows that the sound extends up to a frequency
of the order A®w ~ v /I, The movement of the body in this case
dissipates energy by exciting sound waves. It is worth noting
that equations (14) and (15) are hydrodynamic equations, where
there is no external force: the force exerted by the body on the
gas is taken by the molecular movement, which determines
(through 7) the amplitude of the free sound waves.

The above treatment can also be used for plasma. Let us
assume an ionized gas, and consider only its ionized compo-
nent. The density of the gas and the density of the plasma are
very low. The electrons (e) have a temperature T,, while the
ions (i) have a temperature T}, such that T,>> T,. Both tempera-
tures are much higher than the Coulomb energy g>/a, where q
is the electron (ion) charge and a is the mean separation dis-
tance between the particles. The electrons are correlated to
the ions, through the Debye length, which in this case is very

. . 2 2
large. The corresponding cross-sections are C¢—e =\ ¢ /T,
2, )2 4,2 2
y Ol = (q /7}) and 0, ; =q /(I +T;"); the mean free-

3

2 3.2, 4
pathsare A,_, =(a" /o, ,)a=aT, /q , A_j=a Tiz /q4

32,2, 4(.2 2
and A,_; =a T, T /q (Te +T ); the mean lifetimes are

3 4 3 4
T =Noo/Ve=a Ty ymT, I q , 7;_; =a T;\\MT; / ¢ and

3 [ 4 [
To_j=a Te]; mMTeT; /q (Te mTe +];- MT;)’ where m is

the electron mass and m is the ion mass. If Tp\mT, > I;\|MT;

e—e

(which is the most realistic case), then 7,_; = 7;_; <7,_,,
which shows that the electrons follow rapidly the ion motion,
which ensures the equilibrium (electron-electron processes are
immaterial for equilibrium); this is in accordance with the adi-

abatic hypothesis. In the unrealistic case, T,mT, < T;/MT;

the electrons lag behind the ions. In this case there exist an
ionic displacement u, and an electron displacement u,, as well
as a restoring polarization force which is responsible for a

2 2
plasma frequency given by @y =4zng" / u, where 4 is the

reduced ion-electron mass. The ion-electron center of mass
moves freely, with an ionic displacement coordinate which
may be estimated as in equation (13); the electron compo-
nent remains to be determined from boundary conditions. The
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ion-electron relative coordinate is subject to the polarization
force and is a superposition of waves with frequencies given by

a)2 = a)g + v2k2 . We note that this is a hydrodynamic regime,

where the pressure force ~ —2 pvz , although hydrodynamic, is

equilibrated by the molecular movement.
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