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Introduction

This manuscript appears due the necessity to generate 
tunable optical tweezers for trapping particles generating 
asymmetric distributions. This is performed using a temporal 
ensemble of non-diffracting beams. The study is supported by 
the fact that arbitrary optical fi eld can be expressed as a sum of 
coherent modes [1], where the mode representation satisfi es an 
Fredholm integral equation whose kernel is the autocorrelation 
function (t1,t2) [2], implying that the coherence degree is time 
depending. The generic features of the optical fi eld can be 
identifi ed only when the optical processes under study presents 
a stationary behavior, and the integral equation acquires the 
form of a convolution function. However, a large variety of 
optical fi elds do not satisfy stationary properties [3,4]. One 
example can be found, in the statistical analysis of a process 
with few photons. The statistical properties display a probability 
distribution similar to that in a queuing process [5]. Another 

example is the propagation of light trough atmosphere [6] . In 
the present manuscript, we describe the engineering of optical 
modes, whose amplitude function is described by a stochastic 
succession of elementary modes type Markov chain. The mean 
irradiance distribution is characterized by using the time 
depending purity function, whose temporal evolution is related 
with the entanglement described by the transition probabilities 
associated to the modes succession. The stochastic process is a 
type convergent Markov chain, that reaches a fi nal equilibrium 
confi guration [7,8]. The time depending optical fi eld offers 
interesting applications in cryptographic information, dynamic 
holography, tunable spectroscopy and self-healing processes. 
The theoretical model consists in associating a stochastic 
matrix to the chain. The stochastic matrix elements are related 
to the transition probabilities among possible states. The 
dynamics of the process is analyzed by interpreting the matrix 
as a transformation applied to a random vector, that represents 
the initial state of the chain. The evolution of the initial state is 
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obtained by sequentially applying the transition matrix, which 
generates a fi nal stochastic matrix named N-step stochastic 
matrix [5] which takes information from the probability of 
initial states reaching a fi nal state in N steps.

A fundamental point consists in the analysis of the stability 
of the process. In order to do so, we studied processes whose 
N-step stochastic matrix acquires a regular form, this means 
that all the matrix elements are different from zero. This 
assures the stability of the Markovian process. The issues to 
be addressed are the following: for a given process Markov-
type chain and assuming an initial state which has associated 
an initial random vector, it is necessary to identify how this 
vector evolves generating entanglement among the elements 
of the resulting random vector. The fi nal state is described by 
calculating the entropy values implicit in the N-step stochastic 
matrix [9,10]. From this analysis we are able to determinate 
the time evolution of the purity of the Markovian optical 
fi eld [11,12]. To maintain a geometrical point of view, we take 
advantage on the fact that each Markovian chain type process 
is associated with a directed graph named digraph, where each 
physical state corresponds to a node. The evolution of the 
process generates connectivity among the nodes, corresponding 
to the entanglement of the process. To associate an optical 
meaning, the nodes are matched with Bessel modes of integer 
order and the Markovian chain corresponds to the evolution of 
the connectivity among the modes. The global structure of the 
resulting optical fi eld is obtained when the entropy and purity 
values reach a stable confi guration.

Description of markovian chains

A stochastic process is a parametrized set of random-
variables. We consider the time as the parameter i.e. X(t),i 
= 1, 2, .., n. The stochastic process is completely determined 
by the nth-order correlation function expressed as:
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where the subindex refers to time and P (x0, x1, x2, . . .) is the 
occurrence probability of the random variables (x0, x1, x2, . . .). P 
(xn|, xn−1, xn−2, . . .) is the conditional probability that represents 
the probability of occurrence of xn given the occurrence of an 
event defi ned by (Xn−1, Xn−2, . . . ). When the process depends on 
its recent history, which is known as the Markovian hypothesis, 
Eq.

(1) acquires a simplifi ed form as follows:

         0 1 1 1 2 1 0 0, , , | | | .n n n n nP x x x P x x P x x P x x P x      

                 (2)

The previous expression defi nes the Markov chain where 
the term P (xi|xi−1) is known as the transition probability. To 
analyze the evolution of the Markov chain, we associate to the 
process a stochastic matrix representation, which is interpreted 

as a transformation of the random initial vector given by
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where π0 = (a0, . . ., an) is the random initial vector and Pij is 
the probability of the random variable to pass from the i state 
to the q state with the following property:

1,   1, 2, , .iq
q

P i n               (4)

Õ

The Markovian process is obtained by applying recursively 
the matrix to the resulting vector, i.e.,

2
1 0 2 1 0 0P,   P P ,     P .NN          
      

 
                 (5)

where stochastic matrix PN is known as the N-step transition 
matrix. Very important properties of the N-step transition 
matrix can be highlighted. When this matrix is applied on an 
initial state, forbidden states can appear. A fi nal state cannot 
be reached from this initial state, this effect is closely related 
to bifurcation properties. Another effect consists in the chaos 
generation, which consists on small changes on the probability 
values of the initial states that evolve toward states completely 
different. The N-step matrix allows the identifi cation of the 
equilibrium states, which occur when the entropy values are 
stabilized. All of the properties previously mentioned depend on 
the specifi c Markovian chain. For this reason, in the following 
section we show a case when the N-step matrix reaches a 
stable confi guration. The evolution of entropy values and the 
connection among the nodes can be identifi ed by associating to 
the N-step stochastic matrix to a digraph of the form sketched 
in Figure 1.

Figure 1: Digraph associated to a Markov type process.

The recursively application of the stochastic matrix is related 
to the evolution of the digraph. It can be easily identifi ed from 
the digraph that the N-step stochastic matrix acquires a regular 
form and then the process reaches a stable confi guration. Thus, 
the elements in the N-step stochastic matrix are different 
from zero, this property fulfi lls for a Markovian chain type 
Ehrenfest. Moreover, this type of process is applied in order to 
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describe the thermodynamic equilibrium, which allows to be 
matched with the stability of optical processes. The recursively 
application of the stochastic matrix is related to the evolution 
of the digraph. It can be easily identifi ed from the digraph that 
the N-step stochastic matrix acquires a regular form and then 
the process reaches a stable confi guration. Thus, the elements 
in the N-step stochastic matrix are different from zero, 
this property fulfi lls for a Markovian chain type Ehrenfest. 
Moreover, this type of process is applied in order to describe 
the thermodynamic equilibrium, which allows to be matched 
with the stability of optical processes.

Markov chain-type ehrenfest process

To describe the Markov chain-type Ehrenfest process, we 
can conveniently use a box model as follows. We assume two 
boxes labeled as A and B that contain n balls. Box A contains balls, 
and box B contains n − q balls. The balls are labeled from 1 to n 
and they are randomly distributed in each box. The Ehrenfest 
process consists of selecting one ball and transferring it to the 
other box with probability , or letting it remain in the same 
box with probability 1−. Keeping this idea

in mind, we can easily show that the stochastic matrix is

vector with an N-step stochastic matrix reproduces the matrix 
row. This represents the equilibrium of the process that is non-
dependent on the initial random vector. From this equilibrium 
condition, we can deduce some generic features, particularly 
the maximum entanglement, that is related to the succession 
of the digraphs shown in Figure 2. The entanglement features 
correspond to the evolution of the different states of the 
probability values among the nodes. This analysis implies 
the evolution of the entropy values. It must be noted that 
the changes in the assigned probability values of the initial 
stochastic matrix, implies the modifi cation of the connectivity 
between states. This information becomes evident on table of 
Figure 2-d, where all nodes show the same connectivity among 
states.

Generation of ehrenfest optical modes

In this section, we implement the Ehrenfest process in 
the optical context. To perform this, we conveniently start to 
defi ne an optical mode as a solution to the Helmholtz equation 
in the following form [13]:

( , , ) ( , )exp( ),x y z f x y i z                (8)

the function f (x, y) satisfi es the eigenvalue equation

2 2 2( , ) ( , ) ( , ),f x y K f x y f x y                      (9)

that propagates along the z coordinate. Eq. (9) can be 
solved using polar coordinates. This allows to easily identify 
the solutions as a set of Bessel modes of an integer order given 
by (Figure 2).

 (2 )   0, 1, 2, .i z in
ne J rd e n     

            
(10)

We remark that all of the modes have the same phase 
function along the z coordinate. Being this a condition of the 
modes that present diffraction-free features. In the appendix 
we describe the condition for an optical fi eld to correspond 
with an optical mode. using this representation, we propose 
as defi nition for a stochastic mode a sequence of modes whose 
structure follows a stochastic process and locally presenting 
diffraction free features, a particular case occurs when integer 
order Bessel modes are selected following a Markov chain type 
process.

Eq. (10) can be matched with the box model of the Ehrenfest 
process described in the previous section. By replacing the 
label in each ball by J0, J1, . . ., Jn we describe the evolution of 
initial state x0 = (a0, . . ., an). This vector corresponds to the 
coordinates that represent the appearance of the mode with 
the following interpretation: Assuming that the process has 
time duration T, divided by n subintervals of length ∆T. In each 
subinterval, a Bessel mode of integer order is selected. Thus, 
the optical fi eld consists of a succession of mode-type chains 
where the occurrence of the ith Bessel mode is ni. With this 
interpretation, the optical fi eld assumes the structure shown 
in Fig. 3. A liquid crystal display (LCD) is implemented to 
generate the boundary condition that consists of an annular 
slit angularly modulated for synthetizing the corresponding 

To obtain a better understanding of the Ehrenfest process 
evolution, a numerical example for n = 4 and α = 1/2 is 
performed. The issues discussed are: how the row values are 
transformed and how the matrix converges after N steps. The 
following matrix expressions, show the resulting stochastic 
matrix after 1, 2 and 25 steps.

               (6)

               (7)

From the last matrix expression, we can identify that 
all elements in each column have the same value, which 
corresponds to the fi nal equilibrium state [8]. The structure of 
Eq. (7) shows that the product of a row in the arbitrary random 
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Bessel mode [13,14]. The structure of the chain corresponds to 
the Ehrenfest mode.

To get an understanding the evolution of the Markovian 
mode, it is convenient to describe a tree graph, shown in Fig. 4. 
The dotted line represents the sequence (J0 − J0 − J1 − J2 . . . ), and 
the dotted arrowed line represents (J0 − J1 − J2 − J1 . . .). From this 
representation we generate time structured modes. All of them 
must exhibit the same irradiance mean when the equilibrium 
is reached. In the early steps the corresponding modes displays 
different irradiance values. This is shown in Figure 5 that was 
obtained with MATLAB software.

mean irradiance distribution presents diffraction free features. 
The later is easily understood because the irradiance associated 
to each mode is non-depending on the z-coordinate. However, 
locally, these fi elds follow a sequence of optical modes accord-
ing to the Markov chain selected. The resulting optical mode 
consist in a sequence of time changing blocks that do not fol-
low a stationary process. For this reason, the mode is charac-
terized using the entropy models in the following section.

Entropy, purity and interference between Markovian 
modes

From the fact that a Markovian process has associated a 
stochastic matrix, we can identify the generic features through 
entropy calculation. This allows to describe the mode’s 
structural properties. We proposed the calculus of the Von 
Neumann entropy [10] in order to obtain the entropy value from 
the N-step stochastic matrix. The entropy is calculated from 
the principal diagonal elements. The resulting value acts as a 
reference value for the entropy measurement obtained from 
the elements of the secondary diagonal. This value contains 
information about the correlation among the constitutive 
modes [15]. By comparing these entropy values, we can deduce 
how the correlation function evolves, allowing to understand 
the irradiance distribution as a function of N, which represents 
the number of applications of the initial stochastic matrix. The 

a) b) 
0 1 2 3 

0 0.0714 0.2857 0.4286 0.2143  
1 0.0714 0.2857 0.4286 0.2143  
2 0.0714 0.2857 0.4286 0.2143  
3 0.0714 0.2857 0.4286 0.2143  

c) d) 

Figure 2: Depicture of the stochastic matrix process corresponding to Eq. (7). a) 
Digraph associated to the initial stochastic matrix. b) Digraph for E2. c) Digraph for 
E25 when the process reaches a stablish confi guration. d) Numerical representation 
of the digraph shown in c).

Figure 5. The mean irradiance after N-steps for an 
Ehrenfest type process. a) Represents the initial state 
associated to a J0 Bessel mode. The initial probability vector is 
irradiance after 2-steps, the probability vector is (1/2,1/2,0,0). 
c) Mean irradiance after 25-steps, the probability vector is 
(0.0714,0.2857,0.4286,0.2143). It must be noted that this 
last vector corresponds with a row for the stabilized N-step 
stochastic matrix. The expression for the mean irradiance can 

be related to the probability vector as ( ) 2 2 2 2 2 2
0 0 1 1 2 2( )NI n P J P J P J   , 

where ( )N
inP  is the occu number for the irradiance of each mode.

The Ehrenfest mode consists of a sequence of Bessel modes 
of integer order where each sequence appears according to 
a certain probability value. The state starts with a zero or-
der Bessel beam, whose irradiance is shown in Fig 5-a, this 
state evolves following the chain and after 3 steps, the initial 
vector evolves toward the vector whose irradiance is given by 

(2) 2 (2) 2 (2) 2
0 0 1 1 2 2J J J    . When the experiment is performed n-

times, the number of occurrences of each element of the ba-
sis can be obtained from the transformed random vector. The 
irradiance mean after 3 steps is shown in Fig 5-b. When the 
number of steps increases, the chain is stabilized and the irra-
diance mean distribution is shown in Figure 5-c. We analyzed 
the global optical fi elds once the equilibrium is reached. The 

Coherent plane wave  
linearly polarized  

Figure 3: To generate the Bessel modes, we illuminate a LCD containing an annular 
slit with time-dependent angular modulation with a coherent plane wave linearly 
polarized.

 

Figure 4: Sketch of the entanglement between states as “n” grows, during this 
evolution is possible see that the probability density is distributed between the 
accessible states
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Von Neumann entropy is defi ned as

 Tr Ln ,N N
vS E E               (11)

where Tr denotes the trace of stochastic matrix EN Ln EN. It 
must be noted that this type of entropy contains information for 
the irradiance distribution. However, we need to describe the 
entanglement among the elements of the basis. This description 
can be obtained by proposing the correlation entropy calculus 
as an ansatz using the elements in the secondary diagonal. This 
entropy takes the following form:

 Tr ,N N
cS D E LnE                (12)

where TrD denotes the trace of the secondary diagonal. 
Then, a good method of describing the mode structure is 
applied by calculating the difference of the entropy values, 
which is expressed as

.c vS S S                                (13)

We propose this defi nition, since it can easily prove that 
the correlation entropy is always lower-bounded by the Von 
Neumann entropy Sc, . . . Sv. To compare the entropy values, 
each diagonal needs to satisfy the normalization condition. 
From Eq. (13), certain interesting cases can be identifi ed. The 
limit case occurs when ∆S = 0. Its physical meaning is that all 
irradiance events involved during the process participate in the 
global irradiance distribution. The other case occurs when ∆S 
= S. There is no interaction among the elements of the basis; 
thus, they are statistically independent. However, this case is 
not permitted in the Markov chain-type Ehrenfest process. 
Finally, more entropy measurements can be obtained from the 
qth-row elements, expressed as

  ,q f iq iq
i

S Ln                 (14)

where iq denotes the elements in the qth row and satisfi es Í
i 

iq = 1 for q = 0, 1, 2, . . ., n. From this entropy row, an order 
relationship is easily identifi ed, e.g.,

2 4 5 ,qS S S S                   (15)

this means that a qth-Bessel mode appears in a principal 
manner, followed by the second- order Bessel mode that appears 
in the same proportion as the fourth-order Bessel modes, and 
so on. From this order relationship, we can associate a purity 
measurement to the Ehrenfest mode [12] as follows:

( )

( )
0

1 ,
n
q

q N n
il

S
P

S


 
               (16)

which determines the similitude of the Markovian mode 

with the Jq mode because 
0

1
n

q
q

P


 . The entropy values for 

the Ehrenfest mode are given by Sv = Sc = 0.5383. The equality 
indicates that the process reaches an equilibrium condition. 
In addition, all of the rows have the same entropy value. 
Consequently, from the purity defi nition, we can deduce that 
the resulting mode is the same for each element of the basis. 
This result is expected because the Ehrenfest process describes 
an equilibrium system. Consequently, once the equilibrium 
condition is reached and as a result of the isotropy of the 
process, all the basis elements appear in the same proportion. 
The purity concept describes the times each element appears 
in a given mode.

Conclusions

We proposed a theoretical model to generate stochastical 
optical modes with a set of Bessel modes ordered according to 
a Markovian-chain type process. The model was obtained by 
associating a stochastic matrix to this process and recursively 
applying it to an initial state obtaining an N-step stochastic 
matrix. The latter represents the probability for an initial 
state to reach a fi nal state in N-steps. This matrix also takes 
information of the process evolution, obtained through entropy 
values calculated from the rows which have a random vector 
structure. The set of entropy values allowed us to associate 
a purity degree for the resulting mode giving information 
about the entanglement of the basis elements. Computational 
simulations were performed with MATLAB software for a 
Markov chain-type Ehrenfest process. This type process was 
implemented because it describes the conditions under which a 
thermodynamic process reaches equilibrium. The optical fi eld 
evolves towards an optical mode which presents diffraction free 
features. The proposed model can be implemented to analyze 
interesting features of the optical fi eld such as interference 
effects by means of the purity concept. This is possible 
assuming a set of Markovian modes, all of them with the same 
purity value. This means that the interference can be described 
by counting the number of coincidences among the basis 
elements, and can be applied to generate tunable holography. 
Other immediate applications are cryptographic transference 
information, entanglement of arbitrary optical fi elds, self-
healing analysis [16–21] and tunable optical tweezers more 
details can be found in [22–25].

(Appendix)

Figure 5: The mean irradiance after N-steps for an Ehrenfest type process. a) 
Represents the initial state associated to a J0 Bessel mode. The initial probability 
vector is (1, 0, 0, 0). b) Mean irradiance after 2-steps, the probability vector is (1/2, 
1/2, 0, 0). c) Mean irradiance after 25-steps, the probability vector is (0.0714, 0.2857, 
0.4286, 0.2143). It must be noted that this last vector corresponds with a row for the 
stabilized Nstep stochastic matrix. The expression for the mean irradiance can be 
related to the probability vector as I =(N) n(P02J02+P12J12+P22J2 2), where (N)nPi . is 
the occurrence number for the irradiance of each mode.

https://www.peertechz.com/articles/Appendix.rar
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