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Introduction

We present a classical Poisson manifold approach, closely 
related to construction of integrable Hamiltonian systems, 
generated by nonassociative and noncommutative algebras. 
In particular, we devise its natural and simple generalization, 
useful for describing a wide class of Lax type integrable 
nonlinear Hamiltonian systems on associative noncommutative 
algebras, initiated fi rst in [1-4], in case of the associative 
noncommutative operator algebras and continued later in [5-
11], in case of general associative noncommutative algebras.

Poisson structures on non commutative functional ma-
nifolds

It is interesting to look at construction of the Hamiltonian 
operators and revisit it from the classical point of view, 
considering them as those defi ned on the naturally associated 
[4,12-17], cotangent space ( )T M  to some linear functional 

noncommutative manifold M   ,


    where   is, in general, 
a (non)associative noncommutative algebra over a fi eld 
 ,  1:= ( ; )C    and   is its naturally adjoint space. Then, 
a Hamiltonian operator on M  is defi ned [12,15], as a smooth 
mapping : ( ( ); ( )),M Hom T M T M   such that for any fi xed 

u M  the bracket 

{ , }:= ( ( ), ( ) ( )),f g f u u g u             (2.1)

where , :f g M   are arbitrary smooth mappings 
from the functional space ( ) ( ),M u    satisfi es the Jacobi 
identity. The bracket (2.1) is determined on M  by means of 
the natural convolution ( , )   on the product ( ) ( ),T M T M   
and respectively, the gradient ( ) ( )f u T M   of a function 

( )f M  is calculated as 

=0( ( ), ) := [ ] / |f u h df u h d               (2.2)

for any ( ).h T M  It is well known [18,19], that a linear 

Abstract

We have revisited the classical Poisson manifold approach, closely related to construction of Hamiltonian operators, generated by nonassociative and noncommutative 
algebras. In particular, we presented its natural and simple generalization allowing effectively to describe a wide class of Lax type integrable nonlinear Kontsevich type 
Hamiltonian systems on associative noncommutative algebras. 

Review Article

Poisson structures on (non)
associative noncommutative 
algebras and integrable 
Kontsevich type Hamiltonian 
systems
Oksana E Hentosh1, Alexander A Balinsky2 and Anatolij K 
Prykarpatski3*
1Institute for Applied Problems of Mechanics and Mathematics, NAS, Lviv, 79060 Ukraine

2Institute of Mathematics, Cardiff University, Cardiff CF24 4AG, Great Britain, UK

3Department of Physics, Mathematics and Computer Science, Cracov University of Technology, 
Krakow, Poland 

Received: 27 December, 2019
Accepted: 29 January, 2020
Published: 30 January, 2020

*Corresponding author: Anatolij K Prykarpatski, 
Department of Physics, Mathematics and Computer 
Science, Cracov University of Technology, Krakow, 
Poland, E-mail: 

Keywords: Hamiltonian systems; Lie-Poisson 
structure; Group agebras; π-metrized Lie aleg-bras; 
Kontsevich type systems

https://www.peertechz.com

https://crossmark.crossref.org/dialog/?doi=10.17352/amp.000010&domain=pdf&date_stamp=2020-01-30


002

https://www.peertechz.com/journals/annals-of-mathematics-and-physics

Citation: Hentosh OE, Balinsky AA, Prykarpatski AK (2020) Poisson structures on (non)associative noncommutative algebras and integrable Kontsevich type 
Hamiltonian systems. Ann Math Phys 3(1): 001-006. DOI: https://dx.doi.org/10.17352/amp.000010

operator ( ) : ( ) ( ),u T M T M    determined at any point 
,u M  is Hamiltonian iff the suitably defi ned [18], Schouten–

Nijenhuis bracket 

( ), ( )]] = 0u u [[               (2.3)

identically on .M  Namely, this condition (2.3) was used in 
the investigations [18,20], to formulate criteria for the operator 
( ) : ( ) ( )u T M T M    to be Hamiltonian on the functional 

manifold .M  Yet these criteria appear to be very complicated 
and involve a large amount of cumbersome calculations even 
in the case of fairly simple differential expressions. So, we 
have reanalyzed this problem from a slightly different point of 
view. First, recall that the Jacobi identity for the bracket (2.1) 
is completely equivalent to the fact that the bracket operator 
defi ned as ( ) := { , }fD g f g  for a fi xed ( )f M  and arbitrary 

( )g M  acts as a derivation on the space ( ( );{ , }) :M  

{ , } = { ( ), } { , ( )},f f fD g h D g h g D h            (2.4)

where , ( )g h M  are taken arbitrary. This can be easily 

reformulated as follows: take any element ( ),T M   such 

that the Fréchet derivative 
,( ) = ( )' 'u u  

 at any u M  with 

respect to the convolution ( , )   on ( ) ( ),T M T M   and construct 
a vector fi eld : ( )K M T M  as 

( ) := ( ) ( ).K u u u               (2.5)

Then the derivation condition (2.4) can be equivalently 
rewritten [4,12,15-17], as the strong Lie derivative 

,:= = 0' ' '
KL K K K                  (2.6)

along the vector fi eld ( ) = ( ) ( ) ( )K u u u T M    at any u M  for 

all “self-adjoint” elements ( ).T M   Equivalently, a given 

linear skew-symmetric operator ( ) : ( ) ( ), ,u T M T M u M     
is Hamiltonian iff the Lie derivative (2.6) vanishes for all “self-

adjoint” elements ( ).T M   Moreover, as was observed in [21], 
it suffi ces to check the condition (2.6) only on the subspace 

of elements ( )T M   satisfying the condition ( ) = 0' u  for any 
.u M

As an example, one can check that a skew-symmetric 
matrix-differential operator on M  of the form 

( ) := ( ) ( ),x xu u D D u   
              (2.7)

where, an n -dimensional square matrix 

=1
( ) := ( : , = 1, , ), ,

n
s

s ij
s

u u i j n n u M      satisfi es the 

condition (2.6) iff the linearly independent elements from 

{ : =1, }jspan e j n


  generate the fi nite dimensional 

nonassociative Balinsky-Novikov algebra [22] and satisfy the 

conditions 
=1

=
n

s
i j ij s

s
e e e  for all , = 1, .i j n  Similarly, one can 

verify that the skew-symmetric inverse-differential operator 

1 1( ) := ( ) ( ) ,x xu u D D u              (2.8)

where, as above 
=1

( ) := ( : , , = 1, , ),
n

s
s ij

s
u u u M i j n n      the 

sign " "  means the usual matrix transposition, is Hamiltonian 

iff the basic nonassociative algebra : { : =1, }jspan e j n


 �  

coincides with the right Leibniz algebra [23] and the condition 

=1
=

n
s

i j ij s
s

e e e  holds for any , = 1,i j n  . The skew-symmetric 

inverse-differential operator (2.8) can be naturally generalized 
to the expression 

1 1( ) := ( ) ( ) ,x x x xu D u D D u D                 (2.9)

which can be rewritten as

1 1( ) = ( ) ( ) ( ) ( ) ,x x x xu D u D D D u u u                (2.10)

where, by defi nition, 
1 =x xD D I

 and 
21

0

1(...) := (...) (...)
2

s

x s
D ds ds

       

for all 0,2 ].x   The condition (2.6) for the operator (2.10) 
to be Hamiltonian reduces to the constraints on the related 

nonassociative algebra : { : =1, }jspan e j n


 � exactly coinciding 

with those, analyzed in some detail in [24] .

As it was already mentioned [18,24], based on the matrix 
representations of the right Leibniz algebra and the new 
nonassociative Riemann algebra, one can construct many 

nontrivial Hamiltonian operators  ( ) :u     on the 

adjacent weak Lie algebra  ,  related with diverse types 

of nonassociative noncommutative algebras .  These 
Hamiltonian operators prove to be very useful [25,26,27], 
for describing a wide class of multicomponent hierarchies 
of integrable Riemann type hydrodynamic systems and their 
various physically reasonable reductions.

Poisson structures on manifolds generated by associa-
tive non commutativ e algebras

Proceed now to a slightly generalized construction of 
Hamiltonian operators on a phase space, generated by 
associative noncommutative algebra A -valued matrices, 
which was fi rst studied in [1-4], in case of the noncommutative 
operator algebras and continued later in [5-11], in case of 
general associative noncommutative algebras. This natural 
and simple generalization appeared to be very useful 
[28,29,30,31,8-10], for describing a wide class of new Lax 
type integrable nonlinear Hamiltonian systems on associative 
noncommutative algebras, interesting for diverse applications 
in modern quantum physics.

We start here with a free associative noncommutative 

algebra 1 2= , ,..., >,mA u u u�  generated by a fi nite set of 

elements { : =1, },ju A j m  and defi ne its “abelianization” 

:= / [ , ]A A A A  and the projection : ,A A   where the 
space [ , ] :=A A  {uv vu A   : , }.u v A  Consider now a 
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naturally related with A  n -dimensional matrix Lie algebra 

:= ( ; )gl n A  over the fi eld   with entries in A subject to the 

usual matrix commutator [a,b] := ab ba for all a,b .  Being 

fi rst interested in the Lie-algebraic studying [14,15,32,33], of 

co-adjont orbits on the adjoint space ,  let us construct a bi-

linear form < | >: A       on the Lie algebra   by means 

of the trace-type expression

< a|b >:= tr(a b) 
             (3.1)

for any a,b .  The following important lemma holds.

Lemma 3.1 The bilinear form (3.1) on   is symmetric, 

nondegenerate and ad-invariant. 

Proof. Symmetricity: We have: 

 
, =1, , =1,

, =1, , =1,

< a|b >= (a b ) = (a b b a )

(b a ) = (b a ) =< b|a > 0

ij ij ij ij ij ij
i j n i j n

ij ij ij ij
i j n i j n

mod

 

 

 



 

  

          (3.2)

for any a,b .  

Nondegeneracy: Assume that < a|b >= 0 A   for a fi xed 
a  and all b .  state that a=0,  let us put then b=a and 
obtain 

, =1,

<a|a>= (a a ) = 0 .ij ij
i j n

            (3.3)

Taking into account that the associative algebra is generated 

by the fi nite set of elements { : =1, },ju A j m  it is easy to deduce 

from 2n  expansions of elements 

(1) (1) (1) (1) (1) (1)...1 2 1 2
( . ) ( ; (1), (2),..., ( )) (1) (2) ( )1 1 1 1 1 1(1)| | 1

a := = ...
s s s s s sm m

ij k i j k m m
s n

c C u u u     


  
 

 

   
  



(1) (1) (2) (2)(1) (2) (1) (1) (1)... ; ...1 2 1 2 1 2
( ; (1), (2),..., ( ); (1), (2),..., ( )) (1) (2) ( )1 1 1 2 2 2 1 1 2(1) (2) ,| |,| | 1 2

...
s s s s s s s s sm m m
k m m m

s s n

C u u u        
 

  
 

 

   
  



(2) (2) (2)
1 2
(1) (2) ( )1 2 2

... ...s s sm
mu u u  

   
             (3.4)

from A  that the sum 

=1,

( ) = 0k k
k n

c c                 (3.5)

iff = 0kc  for all 2= 1, .k n  Really, the sum of (3.5) under 

the  -mapping can be now rewritten, respectively, as 

: a = a : a , =1, ,j
N j j

j N
j N



   � � �          (3.10)

(1) (1) (1) (1) (1) (1)...1 2 1 2
( (1), (2),..., ( )) (1) (2) ( )1 1 1 1 1 1(1)2 | | 1=1,

(1)
1

( (1), (2),..., ( ); (1), (2),..., ( ))1 1 1 2 2 2(1) (2) ,| |,| | 1 2

( ) = ...
s s s s s sm m

k k m m
s nk n

s s

m m
s s n

c c D u u u

D

     


     
 

  
 

 

 

   
 



  

 





(1) (2) (2)(1) (2) (1) (1) (1)... ; ...2 1 2 1 2
(1) (2) ( )1 1 2

(2) (2) (2)
1 2
(1) (2) ( )1 2 2

...

... ...

s s s s s s sm m m
m

s s sm
m

u u u

u u u

  

  

  
    

 

   
   

              (3.6)

with some D -coeffi cients from   for all ,j nS   
depending quadratically on coeffi cients of expansions, staying 
at uniform and symmetric basis elements of the algebra .A  As 
the  -mapping sends all of them, by defi nition, to zero, the 
resulting system (3.5) reduces to the set of algebraic equations 

(1) (1) (1) (1) (2) (2)(1) (1) (2)... ... ; ...1 2 1 2 1 2
( (1), (2),..., ( )) ( (1), (2),..., ( ); (1), (2),..., ( ))1 1 1 1 1 1 2 2 2

= 0, ,...,
s s s s s s s s sm m m

m m mD D        

      
   

 
               (3.7)
reducing successively for all j nS   to the condintions 

(1) (1) (1) (1) (2) (2)(1) (1) (2)... ... ; ...1 2 1 2 1 2
( ; (1), (2),..., ( )) ( ; (1), (2),..., ( ); (1), (2),..., ( ))1 1 1 1 1 1 2 2 2

= 0, ,...,
s s s s s s s s sm m m
k m k m mC C        

      
   

 
                 (3.8)

being equivalent to the equalities = 0kc  for all 
2= 1, .k n  

 As a simple consequence from Lemma 3.1 one derives the 
next proposition.

Proposition 3.2 The construted Lie algebra   is ad-invariant 
and  -metrized. 

Proof. Really, from the symmetry property (3.2) one easily 
obtains that 

< a|[b,c] >=< [a,b]|c > 0mod            (3.9)

modulo  -mapping for any elements a,b and c .  As 
the bilinear form (3.1 is non-degenerate, one has ,    that 
jointly with the ad-invariance property (3.9) means that the 
Lie algebra   is metrized. 

Being interested in constructing integrable noncommutative 
dynamical systems on the algebra ,A  we need to introduce 
into our analysis a “spectral” parameter ,  responsible 
for the existence of infi nite hierarchies of the corresponding 
dynamical systems invariants, guaranteeing their integrability. 
This wil be done in next Section, devoted to the Lie-algebraic 
analysis on loop-Lie-algebras, related with the Lie algebra ,  
introduced above.

Consider now the Lie algebra { ,[ , ]},   constructed above, 

and the related loop Lie algebra  1{ := { , },[ , ]}       of 
the corresponding  -valued Laurent series with respect to the 
parameter ,  

: a = a : a , =1, ,j
N j j

j N
j N



 
  

 
  � �  �        (3.10)
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and defi ne on it the corresponding to (3.1) modulo 
-mapping bilinear form ( | ) : :A     

(a|b) := < a|b >res                          (3.11)

for any elements a,b .    It is easy to observe that the 
bilinear form (3.11) is also symmetric and non-degenerate. 
Thus, the following proposition holds.

Proposition 3.3 The loop Lie algebra   is ad-invariant and 
-metrized. 

As the loop Lie algebra   allows natural direct sum splitting 

   �   into two Lie subalgebras 
  and ,  where

=0,

: a = a : a , =1,j
N j j

j N

j N  

    
  

  � �  �        (3.12)

and 

( 1): a = a : a , ,j
N j j

j
j 

  
 

     
  

  � � 


�         (3.13)

their adjoint spaces with respect to the bilinear form 

(3.11) split the adjoint loop space =  
      and satisfy the 

equivalences 
 
    and .

 
  

Let now a linear endomorphism :      equal =  

( ) / 2,P P   where, by defi nitions, :P        are the 

projections on the corresponding subspaces .     It is a well 
known property [14,15,32,33] that the deformed Lie product 

[a,b] := [ a,b] [a, b]R                 (3.14)

for any a,b    satisfi es the Jacobi condition and generates 
on the loop Lie algebra   a new Lie algebra structure. 

Within the classical Adler-Kostant-Symes Lie-algebraic 
approach, or its -matrix structure generalization 
[14,15,32,33], the adjoint loop space   is then endowed with 
the modifi ed Lie-Poisson structure 

{l(a), l(b)} := (l|[a, b] ),                (3.15)

for any basic functionals l(a), l(b) ( )D      subject to 
which the whole set 

( ) = { ( ) : (l|[grad (l),a]) = 0 , a }I D                   (3.16)

of smooth Casimir functionals on 
  is commutative with 

respect to the deformed Lie-Poisson structure (3.15) on ,  

that is { , } = 0 A     for all , ( )I     and, by defi nition, 

=0

(q|grad (l)) := (l q) .d
d 




      The latter makes it possible 

to construct integrable Hamiltonian fl ows on the associative 
algebra A  as Poissonian fl ows on the co-adjoint orbits on 
the adjoint space ,  generated by suitable loop Lie algebra 
  Casimir gradient elements. Namely, if an element l    is 
fi xed, the corresponding Hamiltonian fl ow on   subject to 
the deformed Poisson bracket (3.15) and a Casimir funcrtional 

( )I    possesses the well known Lax type [33-40], 
representation 

l/ = [ (l), l] ( 0 ),d dt P grad mod
  

              (3.17)

where t  is a related evolution parameter. The example 
of this construction and its Lie algebraic properties are 
discussed in the next Subsection.

Kontsevich type integrable systems on unital fi nitely ge-
nerated free associative noncommutative algebras

Let a free unital fi nitely generated associative non-com-

mutative algebra := < , >A u v    be the corresponding group 

algebra of a group { , },G u v  generated by two elements , .u v G  

The algebra A  is infi nite dimensional with the countable basis 

1 1 2 2
1 2< 1, , , , ,... : , ,... >,s j s j s j s jj j j j k k q j j k k q

AL u v v u u v u v v u v u s s       
the related two-dimensional matrix loop Lie algebra 

1{{ , }},  �  := (2; ),gl A  is metrized subject to the 

bi-li near product (3.11) and generated by affi ne elements 

( )

=0,3

a = a k j
k j
jj

 


 


            (4.1)

with four basis Pauli matrix elements (2; ), = 0,3,k gl k    

and algebra components ( )a , , = 0,3.k
j A j k   The 

corresponding Casimir functionals ( )I    generate a 

Hamiltonian fl ow on points l    with respect to the Poisson 

bracket (3.15) in the Lax type form (3.17). To analyze this fl ow 

in detail, let us put, by defi nition, that the seed orbit point l  
  is given by the following  -squared expression

3 ( )

=0,3 =0,2

l = ,j k k
j

j k

u   
            (4.2)

where { (2; ) : tr( ) = , , = 0,3}j j j
k kgl j k      is the 

dual basis of the matrix space (2; ) (2; )gl gl    and 

elements 
( ){ : = 0,3, = 0,2}k
ju A j k are coordinates of some 

A-algebra valued phase space 
(0|2)
AM  in a general position. In 

particular, we will choose the following dual bases: 

0 1 2 3

1 0 0 1 0 0 1 0
= , = , = , =

0 1 0 0 1 0 0 1
   

       
              

 
       
              (4.3)

in (2; )gl   and 

0 1 2 31/ 2 0 0 1 0 0 1/ 2 0
= , = , = , =

0 1/ 2 0 0 1 0 0 1/ 2
   

       
              

in (2; ) .gl   Moreover, we also will assume that A-algebra 
valued coeffi cients of the phase space (0|2)

AM  in (4.2) are 
representable subject to the basis of A as 
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0 1 2 3

3 (0) (0) (0) (0)
0 1 2 3

(1) 1 (1) 1 1 (1) 1
2 (1) 10 2 3

11 1 1 1 1 1 1

1 (2) (2) (2) (2)
0 1 2 3

\
= 1 = = 0 = 1

,= = ==
1

= 0 = 0 = = 0

u u u u u
u v v u v u u v v

u v
u u v u u u u v u
u u u v u

     








   
 

      





     
       

 
               

(4.4)

following the result obtained in [31].

As a fi rst important task, we will calculate the corresponding 
Poisson structure on the related A-algebra valued phase 
space (0|2) (l),AM   generated by coeffi cients, presented in the 
expression (4.4). To do this, we need to take into account that 
the phase space (0|2) (l),AM   being endowed with the  -modifi ed 
Poisson structure (3.15), is strongly reduced via the Dirac 
scheme [4,32], subject to the set 

(0) (2)
1 0 2 0:= { = 1= 0, = = 0,u u  

           (4.5)

(0) (2) (0)
3 2 4 3 5 3= = 0, = = 0, = 1= 0}u u u   

of algebraic constraints, imposed on the phase space (0|2) .AM  
The latter means that the true Poisson structure on the 
reduced phase space (0|2) (0|2)(l) := /A AM M   coincides with 
the corresponding Dirac type reduction of the  -modifi ed 
Poisson structure, defi ned on the full phase space (0|2) .AM  As a 
result of simple enough yet cumbersome calculations we arrive 
at the following Poisson brackets 

{ , } = ,{ , } = 0 = { , }u v uv u u v v              (4.6)

on the reduced phase space 
(0|2) (l) := , .AM A u v   

Having taken as a Hamiltonian operator 
2 2:= tr(l ) ( ),h res I    one easily obtains the following [5], 

nonlinear integrable Kontsevich dynamical system 

1 1

1 1

/ := { , } =
:= ( , )

/ := { , } =
du dt h u uv uv v

K u v
dv dt h v vu vu u

 

 

  
   





          (4.7)

on the reduced phase space = , .A u v   Moreover, owing to 
the Lax type representation (3.15), the Kontsevich dynamical 
system (4.7) proves to be equivalent to the following matrix 
commutator equation 

l / = [l, (l)] ( 0 )d dt p mod  
           (4.8)

 for any   in the Lie algebra ,  where the A-valued matrix

(l) = (l) / 2p P gradh
   

1 1 1
0 1 2 3= ( 1) / 2 ( 1) / 2 .v v u v v v v u                  

Taking as Hamiltonian functions the algebraic expressions 

( , ) := tr(l ) ( ), , ,m n m nh res I m n      one can obtain 

a complete set of  -commuting to each other conservation 
laws of the Kontsevich dynamical system (4.7), thus proving 
its generalized integrability. Moreover, choosing both another 
group algebra and orbit elements l  ,  one can construct the 
same way many other integrable Hamiltonian systems on the 

associative noncommutative phase space ,A  that is planned to 
be a topic of a next investigation.

Conclusion

In this work we succeeded in revisting the classical Poisson 
manifolds approach to Hamiltonian operators on functional 
noncommutative manifolds, as well as presented it simple and 
natural realization, generated by associative  noncommutative 
group algebra. The latter appeared to be very useful for 
describing a wide class of new Lax type integrable nonlinear 
Hamiltonian systems on associative noncommutative algebras, 
interesting for diverse applications in modern quantum 
physics.
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