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Abstract

Active thermography is an experimental technique used to analyze samples of materials or entire 
structures without destroying them, by means of a heat source, such as a laser beam of a given power. It is 
posed that such experimental procedure can be modeled mathematically through the complete equation of 
heat transfer. The uncertainty on the assumption of the value of the parameter emissivity of this equation 
is to be analyzed calculating the error between concrete experimental data and simulations where such 
parameter has been taken from the uniform distribution. To the extent of this research, specifi cally for 
active thermography, no previous attempt has been made for using at the same time the complete equation 
of heat transfer (without simplifi cations or linearizations), with the usage of uncertainty quantifi cation for 
the specifi c experimental results to which the mathematical theory was applied.
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Introduction

Active thermography uses a heat source in order to induce 
absorption of such heat into a sample of a possibly unknown 
composition, which then will dissipate through several heat 
transfer mechanisms [1-4]. From the parameters of those heat 
mechanisms, it is possible to infer the heat properties of the 
sample. The need of a mathematical model, particularly one 
that is suitable for an inverse problem, is the central matter 
of this project. The inverse problem is that given experimental 
results, determine the possible value of a coeffi cient of the 
differential equation that models the phenomenon.

In active thermography, an external energy source is 
required for artifi cial thermal excitation. Given the possibility 
of controlling the intensity of the external energy source, 
the artifi cial thermal excitation can reach deeper atoms in 
the object, and therefore information can be obtained from 
more internal layers [4]. Thus, it is used thermal data from a 
heated sample with a laser beam, on its original state, that is, 
without reducing it to dust or any other destructive process. 
The set of performed observations (measurements), may be 
thus modeled through a heath-transfer, partial differential 
equation (transport equation). The spatial thermal parameters 
of a sample may differ when this has a concrete shape and 
dimensions, as opposite of measuring fi ne grinding of the 
material this sample is made of. Also, there are instances where 
the sample cannot or must not be destroyed. This is the case of 
thermography for cancer research, aiming at substituting the 
painful mammograms with much less invading techniques [5].

Problem possing and objectives

Consider that a thin slab of a solid sample of thickness th is 
heated with a light beam (laser) that is uniformly focused onto 
one or more of its surfaces (boundaries) [6]. On the opposite 
side, its temperature can be monitored as a function of time, 
for example with a thermocouple. The variation with time, t, of 
the heat generated in the sample, Q, due to the absorption of 
light of incident power , is given by

     (1)Q q
t


  


where q is a term specifi ed by the sum of the power losses 

by radiation, convection and conduction. If we want to calculate 
the rise of temperature, , of the surfaces that are not in contact 
with an incident laser, we must express the heat term of Eq.1 as 
a function of that increase [6], which can be expressed as

0     (2)
m p m p

h
t C th C V
 

 
 

  
    

This is a linear ordinary differential equation with constant 
coeffi cients, where h is the total heat transfer coeffi cient 
(a linearized sum coming from convection, conduction and 
radiation), m is the material density, Cp is the specifi c heat 
capacity, and V is the volume of the sample; the particular units 
used in this work will be mentioned later on. The solution of 
Eq.2 is [6].

1 exp      (3)t
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where A is the total area of the sample and
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     (4)
2
m pth C
h




 


is the relaxation (transient) time of the system. Eq.3 has 
been used to calculate the specifi c heat capacity ·Cp for thin 
slabs of known thickness [6], because it is obtained from  by 
least squares fi t of experimental curves of  versus t Eq.3, and 
normally semi-log plots are used to avoid uncertainties due to 
deviations from the theoretical model [6].

Successful as it is the approximation mentioned in 
[6] (and other similar to this, like in [7,8], the usage of 
logarithms in one coordinate implies that some information 
is lost, as irregularities are fl atten down. Other works (like in 
(Benzerrouk))[1], describe, but not use the full heat transfer 
equation. Still other applications for active thermography use 
the full heat transfer equation, but no uncertainty quantifi cation 
is presented ( like in (Cannas, et al.,) [2]. It could be therefore 
useful to use a non-linear model, using a numerical approach, 
for which one continues to develop the mathematical model. 
Therefore, it is the purpose of this work to develop a full non-
linear heat transfer model, and then use it to try and infer 
the parameters of a sample of known composition, through 
uncertainty quantifi cation, thus opening the possibility for 
using such model for inference of temperature of a sample 
of unknown composition. This project attempts to model 
active thermography mathematically, and then measure the 
uncertainty of one of its parameters, namely the emissivity, by 
dint of comparison with some experimental data, from specifi c, 
chosen experiments. The novelty of this work comes, therefore, 
from the implementation of the full, non-linear heat transfer 
equation, coupled with using Uncertainty Quantifi cation for 
the particular type of experimental data that was available for 
this work.

Methodology

It is proposed that with experimental data from active 
thermography, determine both experimentally and with 
theoretical modeling the thermal properties of different 
materials and the heat loss from the material under 
consideration.

Modeling, as is used by Dr. Mart´ın Alberto D´ıaz Viera 
[9,10], consists of four main steps:

1. Conceptual Modeling: The problem is put under the 
context of its physical phenomenology, delimiting those 
observables that one wish to quantify. In this case, 
it is modeled the heat transfer through conduction, 
convection and radiation.

2. Mathematical Modeling: Phases and components are 
systematically analyzed, together with the constitutive 
laws, in order to derive the balance equations and 
the initial and boundary conditions. In this case, 
a 3D heat transfer equation is obtained, where the 
Fourier law is part of the equation, and convection 
and radiation are treated as boundary conditions. 
Heat injection is treated as a puntual source. The 

emissivity was taken from the uniform distribution 
(see the Appendix, for some further details).

3. Numerical Modeling: Depending on the shape of the 
balance equations and the mathematical restrictions of 
the problem, it is chosen a convenient way of discretizing 
those equations (for example, with the fi nite element 
method). The numerical discretization depends also on 
the geometry of the domain of interest. In this case, 
Finite elements are used for discretizing the geometry, 
UMPFPACK is the linear solver, and Newton-Raphson is 
for discretizing time.

4. Computational Modeling: Once the numerical model 
has been obtained, a suitable computational platform is 
chosen, with a computational language and a software 
for writing the numerical model and be able to run it 
for computational simulations. It is the behaviour of 
this last model which fi nally gets validated with the 
experimental data, and where the level of uncertainty 
(discrepancy between observed and simulated results) 
can be evaluated to decide in which way and on which 
of the previously mentioned stages, modifi cations are 
in order, to approach as much as possible, to some 
predetermined level, the optimum of the parameters for 
the theoretical model. The implementation in this case 
was on COMSOL 3.5 a.

Theoretical fundaments

The derivation of the needed non-linear, partial differential 
equations includes using balance equations, heat conservations 
laws, and the Stefan-Boltzman Law and Fourier’s Law for 
radiation properties of heat [6].

Conceptual model 

The conceptual model consists of all the assumptions and 
hypothesis made:

• We are assuming isotropicity.

• Heat is provided uniformly onto one or more surfaces.

• The exchange of energy can represented by convection, 
conduction and radiation only.

• There are no chemical reactions, nor loss of matter, 
only loss of heat, and this last is lost to the air mostly.

• Gravitational potential is negligible.

• It is assumed uncertainty over the emissivity.

Mathematical derivation of the model

In order to make exposition swifter, the detailed derivation 
of the mathematical model has been developed in the appendix, 
and the reader is encouraged to study it. Here it is used the last 
result: Using Equation 30,

q+ o,     (5)m
E q
t

 
 


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the relationship between heat and temperature of Eq.35, and 
Eq.31, and assuming no heat sources, it is obtained

m p mC


     


or, to show explicitly the parabolic form of this partial 
differential equation,

m p mC


     


Boundary conditions

A parabolic partial differential equations require at least 
one Dirichlet boundary condition, or Robin conditions (which 
is the case), given by the constitutive laws and the incident 
heating power source q0, which in general is

n · (mT) = q0 + hconv · (Tenv − T(x,y,z,t)) + m(Tenv
4− T4)            (8)

For the boundaries with q0=0, the Robin boundary 
conditions become

n · (mT) = hconv · (Tenv − T(x,y,z,t)) + m(Tenv
4− T4)             (9)

where the emissivity m  U[0.03,0.05], except for the upper 
part of the sample, which is painted in black and thus has 
emissivity mb. q0 is represented by the laser beam through the 
extremes of the slab, as shown in Figure 1, namely 1 2.

Initial conditions 

The initial condition, as mentioned, is T(0) = temperature 
of air.

   Stefan-Boltzmann constant [W·m−2· K−4]

   Total emissivity of the material [1]

mb   Total emissivity of the material darked side  
  [1]

Cp   heat capacity of the material (at constant  
  pressure) [J/(kg · K)]

Uncertainty in the coeffi  cients

So far the model, say, in Eq.7 assumes a problem which 
can be deal with directly. In this work, for validation purposes, 
such approach will be implemented initially. However, the fi nal 
goal is to develop a methodology for analyzing the uncertainty 
in the parameters (Uncertainty Quantifi cation -UQ- of the 
coeffi cients)[11], of the Partial Differential Equation, namely 
for m,hconv,m, that is, when the sample’s composition is 
unknown, but experimental measurements have been obtained. 
In concrete, in this work it is assumed uncertainty over m, for 
most of the surface of the sample.

The uncertainty of a measured parameter can be 
characterized with the dispersion of the values that could 
reasonably be attributed to the measurand error [12].

Some of the error components may be evaluated from the 
statistical distribution of the results of series of measurements 
and can be characterized by experimental standard deviations 
(Type A). The other components of the error, which also can 
be characterized by standard deviations, are evaluated from 
assumed probability distributions based on experience or other 
information (Type B) [12].

Thus Type A standard uncertainty is obtained from 
a probability density function derived from an observed 
(experimental) frequency distribution, while a Type B standard 
uncertainty is obtained from an assumed probability density 
function based on the degree of belief that an event will occur 
[12].

Because our mathematical model may be incomplete, all 
relevant quantities should be varied to the fullest practicable 
extent so that the evaluation of uncertainty can be based as 
much as possible on observed data (ISO & OIML, 1995)[12].The 
measurement of Type A standard uncertainty is the second part 
of this project, whereas modeling Type B standard uncertainty 
is the third part of this project.

Discretization of mathematical model (numerical model)

The numerical model consists of making the appropriate 
choice of the numerical methods in terms of precision and the 
effi ciency for the solution of the mathematical model.

Although fi nite element methods (FEM) are usually 
substantially more diffi cult to program than Finite Differences 
(FD), this extra effort yields approximations that are of high-
order accuracy even when a partial differential equation is 
solved in a general (nonrectangular) multidimensional region, 
and even when the solution varies more rapidly in certain 

Figure 1: Schematics showing how heat is injected in the laboratory experiments.

Summary of notation of mathematical model

T(x,y,z,t) Temperature [ K ]

Tenv  Air temperature [ K ]

m   Density of material [kg/m3]

   Incident Power[W · m−2]

hconv m  m  Convective heat transfer coeffi cient  
   [W/(m2·K)]

   Thermal conductivity [W/(m·K)]
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portions of the region so that a uniform grid is not appropriate 
[13].

The FEM naturally incorporates a broader spatial extent, 
thus FEM can use a coarser mesh, compared with FD [14].

The basic mixed fi nite element (MFE) method [15], has 
shown to be more than good enough for solving a transport 
equation.

In this case, the resulting problem is a nonlinear partial 
differential equation with initial and boundary conditions, or 
only boundary conditions (stationary case). For the numerical 
solution the following methods are intended to be applied:

• For the time derivative, it can be used a second order 
backward fi nite differences discretization, resulting in 
a totally implicit scheme in time.

• For the rest of the differential operators, concerning 
the spatial derivatives, it can be applied a standard 
Galerkin fi nite element discretization, where Lagrange 
quadratic polynomials can be used as weighting and 
basis functions, which in this work imply a convergence 
of order two [16].

• A regular mesh of tetrahedral elements in 3D can be 
used.

• For the linearization of the nonlinear system of 

equations, an iterative Newton-Raphson method can be 
applied.

• For the solution of the resulting algebraic system of 
linear equations, it can be used a variant of the direct 
LU method for sparse, unsymmetrical matrices.

Computational implementation-comsol multiphysics r

In view of the scale and resolution requirements for 
the transport model, it could be acceptable to perform the 
computational implementation making use of the standard 
fi nite element framework provided in COMSOL Multiphysics 
[17]. In particular, using the PDE mode for time dependent 
analysis in the coeffi cient form. An alternative can be using the 
FEniCS implementation [18]. For concreteness, it is exposed 
here how has been done the implementation in Comsol v 3.5 a.

Parameters

First of all, the parameters of the simulation are defi ned as 
shown in Figure 2. Notice that at the left hand side are shown 
the parameters as written in Eq.7, and in the right hand side as 
is written in COMSOL multiphysics

T(x,y,z,t) = u

Tenv = T env

m = rho m

Figure 2:  Constants of model, as defi ned in Comsol 3.5a. In particular, notice the collection of emissivities.



055

Citation: Tapia AO, Tsonchev RI, D´ıaz Viera MA, Ortiz MH (2019) Modeling of active thermography through uncertainty quantification of parameters of the heat 
transfer equation. Ann Math Phys 2(1): 051-057. DOI: https://dx.doi.org/10.17352/amp.000009

https://www.peertechz.com/journals/annals-of-mathematics-and-physics

 = Phi

hconv = h conv

m = lambda m

 = sigma

mi = Epsilonm

mb = Epsilon-mb

Cp = C p

Notice that i  [2,11] is an index for the emissivities taken 
from the Uniform distribution.

Geometry

The selected geometrical object represents an experimental 
metal sheet (Figures 3,4)

Scalar expressions

The defi nition of the coeffi cients of our equation are 
contained in the section scalar expressions, as can be seen in 
Figure 5.

Comsol equation

Eq.7 is transformed into the comsol form, using the scalar 
expressions to defi ne the coeffi cients, as can be shown in 
Figure 6.

Initial conditions, and lenght of simulation

The initial temperature of the material is considered the 
same as the surrouding air, that is T(0) = Tenv. The length of the 
simulation is for 5.3 seconds, which was seen enough to obtain 
a stationary solution.

Boundary conditions

There is only one type of conditions: Robin. However, in 
most boundaries T(t = 0) = Tenv and only in boundaries 2 and 5 

T = , for the duration of the numerical experiment, as can be 
seen in Figures 7,8.

Mesh

The meshing is Physics-controlled (as per default in 
Comsol, Figure 9), with a so-called normal size in the elements 
(as per default in Comsol).

Figure 3: Defi nition of hexahedron for simulation.

Figure 4: Sheet as a result of hexahedron defi nition.

Figure 5: Scalar expressions.

Figure 6: Subdomain settings is where the coeffi  cients of the Comsol equation are 
written, using the defi nitions of the scalar expressions.

Figure 7: Robin boundary conditions, Φ =6 0.
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Figure 9: Domain mesh.

Solver Parameters: The chosen solver es UMFPACK.

Testing of simulation

Before actually making comparisons with experimental 
data, the computational model was tested for performance. 
The computation went fl awlessly, and an illustration of the 
distributed heat loss is shown in Figure 10.

Validation of model

The model of Eq.7, with the boundary conditions shown in 
Eqs.8 and 9, with the initial condition T(t = 0) = Tenv = 300.15K, 
with hconv = 10[W/(m2 · K)], and the weak condition of injection 
heat  = 1000[W/M2] was set up, according to [1]. The numerical 
solution (shown in Figure 11) has the expected radial behavior 
as described in [1].

Study case and results

The experimental setup as it is done in the laboratory 
of Prof. Tsonchev (Tsonchev, n.d.) is shown in its Comsol 
implementation as in Figure 12.

Results and Discussion

After making numerical simulations with 10 different 
values of emissivity, every time a graphic was made. Such 
graphic compares the experimental values with the numerical 
simulation. Wherever the experimental values were close 
to those of the simulation, the distance between them was 
measured, and it was found that the overall error was ≈ 7%. 
The standard deviation of errors was on the order of ≈ ±10−5% 
between errors (see the annexed pages for details of the 
numerical comparisons between experiment and simulations). 
One of those graphics is shown in Figure 13.

In the annex (last pages of this work), it can be seen the 
numerical results of the simulation for each of the ten different 
values of emissivity (as mentioned before, taken from the 
uniform distribution). In all the simulations a graphic very 
similar to Figure 13, almost indistinguishable, hence only one 
fi gure is exposed, but the whole numerical results can be studied 
in the annex. In Figure 13 it is possible to see upshots at the 
boundaries, clearly a result of the numerical scheme followed. 
However, for the purposes of this work, those numerical errors 
do not affect the comparison with the experimental results, 
because the experimental measurements where taken within 
the heaten sample, not at the boundaries (which are impinged 
by the laser beams).

The results obtained in the fi nal average uncertainty 
quantifi cation suggest that the deviation with respect to 
experimental results is small, and therefore that the full heat 
transfer equation is an adequate model to be used for analyzing 
the parameters of such equation, and then use the full heat 
transfer equation for inverse problems, that is, for inferring 
unknown heat parameters of a sample, within a margin of 
error (uncertainty), no bigger than 10 %.

Figure 10: Result of testing of computational model.

Figure 11: Qualitative validation.

Figure 8: Robin boundary conditions, Φ = 0.
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Figure 12: The experimental setup and the numerical measurement.

Figure 13: Compvarison of the family of simulations (continuos line) with the 
experiment of Prof. Rumen (blue circles). The error in all experiments was ≈ 7 %.

Conclusions

Using the systematic modeling of continuous systems, a 
3D heat equation was derived, from which it was considered 
that the emissivity was the parameter with uncertainty, as 
a working hypothesis. The results show an error between 
simulation and experiments of the order of ≈ 7%, with a 
possible standard deviation of ≈ ±10−5%. This error seems to 
be small enough to surmise that the numerical methods used 
could be used to determine the probability density function of 
the emissivity parameter with a small uncertainty.

(ANNEX FOLLOWS)
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