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Abstract

A mid-point technique is introduced to overcome the diffi  culties in other techniques. The modied 
e⁄ective interaction quark potential which uses to calculate different properties of the NJL model such 
as the constituent quark mass, pressure, and energy density is solved using the present technique. The 
present method gives good accuracy for the mathematical problem and avoids the physical di¢ culty in 
the previous works.
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Introduction

The appearance of divergent integrals in the different 
mathematical-phyiscal models is a real problem. This problem 
represents that the treatment of divergence integrals did not 
give a unique value for divergent integrals such as [1]. There 
are different methods for dealing with the divergent integrals 
such as analytic continuation [2], by regularization [3], by 
summability methods [4], and by nite part integrals [5,6], 
and others [7,8]. In these methods, the missing terms have 
appeared so that no interpretation gives exact results.

In this work, we focus on the quark models that deal with 
strong interactions between quarks inside nucleon. There are 
different quark models such as the quark sigma model and its 
extension [9-15] and Nambu and Jona-Lasinio model (NJL) its 
extension [16-19]. The NJL is taken as a model for the divergent 
integral [16]. The NJL model has the divergent integral that 
obtained from Dirac sea to overcome on this problem, Pauli-
Villars and the three-momentum cutoff methods are applied 
such as [20,21].

Therefore, the N-midpoint technique is applied for 
treatment the divergence integrals in NJL. In addition, the 
thermodynamic properties are calculated in the framework of 
NJL model, in which the coupling constant is generalized as 
a function of temperature and chemical potential, that is not 
considered in Ref [19].

The paper is arranged as follows: In Sec. 2, the NJL model is 
briey written. Sec. 3, thermodynamic properties. are calculated. 
Sec. 4, the discussion of results is explained.

The nambu-jona-lasinio model

The interactions between quarks (q) via scalar qq and 

pseudoscalar q5 q [18], in the framework of NJL model is given 
through the Lagrangian density is,

   2 20= ( ) ( ) ( ) ,          (1)0 52
G

L x q i m q qq q q     

sm0 is the bare quark mass. The are the Pauli matrices. The 
NJL Lagrangian satised the chiral symmetry property at m0 = 0. 
In the present work, the coupling constant G is extended to nite 
temperature (T)and chemical potential ( ) as follows

   , =           (2)0
A TG T G e   

where, A is a free parameter in MeV 1 units. The G(T;) tends 
to G0 at T = 0 and = 0

The Used Method

The N-midpoint technique is used to calculate the 
thermodynamic properties. The scalar density is written as in 
Ref. [18].
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The dimensionless form of Eq. (3) is obtained as follows
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

f = 93 MeV is pion decay constant. The third term in Eq. 
(3) is a divergent term. To apply the mid-point method, the 
formula y = e p0 is used at fy = 1 at p0 = 0 and y = 0 at p0 = 1g. 
Therefore, s is calculated as a function of y as follows:
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The analytic function of s is calculated by using the 
N-midpoint method as in Ref. [23], as follows:
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where Ai is dened as follows:
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Similarly, the thermodynamic potential is written as a 
function of variable y using y = e p0
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The analytic form of is
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Also, we can dene the energy density as in Ref. [25], as 
follows:
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Results and Discussion

In this section, we give the features of the midpoint 
technique in comparison with other methods. The fewer errors 
are obtained in comparison with other numerical methods 
as in Ref. [23]. In comparison with the cutoff technique. Two 
advantages are found, from the mathematical view, the upper 
of momentum value depends on to the parameter n, which gives 
a good accuracy by increasing the parameter n as noted in table 
(1). Another advantage, by transforming the innite divergence 
integral to nite divergence, we control in the missing terms 
that found in other methods. From the physical situation, 
the color superconductivity is found at the critical chemical 
potential that is the order of the cutoff parameter. Thus, the 
regularization procedure has a small e⁄ect on the analysis of the 
color superconductivity [11].

In fi gure 1, the coupling constant is plotted as a function of 
temperature by using Eq. (2). At zero temperature and baryon 
chemical potential, the running coupling constant tends to G0 

in the vacuum, then by increasing temperature, one notes that 
the coupling constant decreases with increasing temperature. 
In addition, the coupling constant is strongly affected with the 
baryon chemical potential at higher values of temperatures. 
By increasing baryon chemical, the running coupling drops to 
lowers values. In fi gure 2, the constituent quark mass is plotted 
as a function temperature. One notes that the constituent quark 
mass is steady function up to 75 MeV, then the constituent 
quark mass decreases with increasing temperature at zero 
chemical potential. By increasing chemical potential, the 
constituent quark mass drops to lower values. In comparison 

Table 1: The relation between accuracy number n, the maximum value of momentum 
p, and Sea term in Eq. (8) (Third Term).

n 400 600 800 1000

Momentum 621:67 MeV 659:38 MeV 686:13 MeV 706:88 MeV

Sea Term 1013 2:7407 MeV 4:8623 MeV 7:2656 MeV 9:8946 MeV

 0.0 100.0 200.0 300.0 400.0 500.0  
Temperature (T)  0 0

0.032  

0.036 

0.040 

0.044 

0.048 

Baryon Chemical potential = 0 
Baryon Chemical potential = 100. MeV 
Baryon Chemical potential = 200 MeV 
Baryon Chemical potential = 300 MeV  

Figure 1: The coupling constant G is plotted as a function of temperature for 
di⁄erent values of baryon chemical potential.
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with Refs. [18,19], the behavior of constituent quark mass is 
the qualitative agreement with the results of Refs. [18,19], in 
which the running coupling is not considered. In fi gures 3,4 
the pressure is plotted as a function of temperature. One notes 
that the pressure is increasing function with temperature and 
shifts to higher values by increasing baryon chemical potential. 
Moreover, the pressure is not sensitive up to 100 MeV, then the 
pressure is a sensitive quantity when baryon chemical potential 
increases more than 150 MeV. The fi nding is agreement 
with the conclusion of Refs. [24,25]. A similar situation for 
energy density, the energy density increases with increasing 
temperature and shifts to higher values by increasing baryon 
chemical potential. In addition, the energy density is steady 
function up to 75 MeV.

In fi gures 5,6 the consistent quark mass is plotted in the two 
cases. In the fi rst case, when the coupling constant is constant 
and the second case is dependent on temperature and baryon 

 0.0 100.0 200.0 300.0 400.0 500.0 
Temperature T (MeV)  

120.0  

160.0  

200.0  

240.0  

280.0  

320.0  

Baryon chemical potential = 0  
Baryon chemical potential = 100 MeV  
Baryon chemical potential = 200 MeV  

Baryon chemical potential = 300 MeV  

Figure 2: The constituent quark mass is plotted as a function of temperature for 
di⁄erent values of baryon chemical potential.

0.0 100.0 200.0 300.0 400.0 500.0 
T (MeV) 

6.5E+10 

7.0E+10 

7.5E+10 

8.0E+10 

8.5E+10 

9.0E+10 

Baryon chemical potential = 0 
Baryon chemical potential = 100.0 MeV 
Baryon chemical potential = 200.0 MeV 
Baryon chemical potential = 300.0 MeV  

Figure 3: The pressure is plotted as a function temperature for di⁄erent values of 
baryon potential, of baryon chemical potential.

 0.0 100.0 200.0 300.0 400.0 500.0  
T (MeV)  

-7.0E+10  

-6.0E+10  

-5.0E+10  

-4.0E+10  

-3.0E+10 

-2.0E+10  
Baryon chemical potential = 0  
Baryon chemical potential = 100 MeV  
Baryon chemical potential = 200 MeV  
Baryon chemical potential = 300 MeV  

Figure 4: The energy density is plotted as a of  function of temperature for di⁄erent 
values chemical. 

Figure 5: The constitent quark mass is plotted as a function of temperture where 
the sold curve represents the constant counpling constant and dash curve 
represents the running coupling constant.

Figure 6: The pressure is plotted as a function of temperture where the sold 
curve represents the constant counpling constant and dash curve represents the 
running coupling constant.
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chemical potential. The consistent quark mass drops to lower 
values at higher values of temperature in the second case. A 
similar situation, the pressure drops to lower values when the 
dependent coupling temperature is considered. Therefore, the 
effect of running coupling constant on the quantitative values 
of observables which leads to the phase transition is kept as 
crossover as in Refs. [18,19]

Conclusion

In this work, the mid-point method is employed to carry 
out the divergence integral in the NJL model that found 
from Dirac sea. To apply this method, the infi nite divergence 
integral to fi nite divergence integral. Therefore, we avoid 
the missing terms that found the previous works such as the 
cut-off technique. In cut-off technique that applied in many 
works has disadvantages, in which all observables depend on 
the choice of cutoff parameter. In the present method, the 
calculated integral depends on the accuracy parameter (n) only. 
Thus, good accuracy is obtained by controlling in the accuracy 
parameter (n): The observables such as constituent quark 
mass, pressure, and energy density are calculated by using the 
present method with a good accuracy.

The coupling constant is extended to fi nite temperature and 
baryon chemical potential. The suggested running coupling 
constant decreases with increasing temperature and baryon 
chemical potential. In addition, the running coupling constant 
tends to the normal coupling constant at zero temperature 
and baryon chemical potential. All observables are dropped to 
lower values when the running coupling constant is included. 
Therefore, the coupling constant is not affected on qualitative 
behavior of the present observables. This fi nding is not 
considered in previous works such as [16-19].
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