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Abstract

It is shown that the quantized internal motion of the black holes consists of Planck quanta (Planck 
mass, length, time, etc), which may be called black quanta. The mass of the black hole is a integral 
multiple of the Planck mass, and the radius of the black hole (Schwarzschild radius) is an integral multiple 
of the Planck length. This circumstance arises from the proportionality of the black hole radius and mass. 
The statistical physics and the thermodynamics of the black holes are derived herein from the statistical 
motion of the black quanta. 

Research Article

Black quanta. On the thermodynamics 
of the black holes

M Apostol*
Department of Theoretical Physics, Institute of 
Atomic Physics, Magurele-Bucharest MG-6, POBox 
MG-35, Romania

Received: 29 November, 2018
Accepted: 29 June, 2019
Published: 02 July, 2019

*Corresponding author: M Apostol, Department of 
Theoretical Physics, Institute of Atomic Physics, 
Magurele-Bucharest MG-6, POBox MG-35, Romania, 
E-mail: 

https://www.peertechz.com

It is well known that bodies may suffer a gravitational 
collapse, providing their mass is suffi ciently large, their 
dimensions are suffi ciently small and their measurable 
internal motion ceased [1,2]. In such a state they are black 
holes. We cannot have any information about their internal 
state. Any mass or radiation signal falls in the infi nite space-
time singularity of the black holes. In order to get a qualitative 
criterion of the black-hole condition we use 2 /GM R  for the 
gravitational energy of a spherical mass M  with radius R , 
where 8 36.7 10 /G cm g s   is the gravitational constant; if 

2 2/ >GM R Mc  (where 103 10 /c cm s  is the speed of light in 

vacuum), i.e. if 2/ > /M R c G , the mass collapses; the condition 

may also be written as < hR R , where 2= /hR GM c  is close to 

the Schwarzschild radius = 2h hr R . We take 2= /hR GM c  as the 
radius of any black hole with mass M .

The radiation inside a black hole (of any kind), being 
delocalized, moves in the highly curved space-time of the 
black hole. Consequently, there appear quantum-mechanical 
transitions [3] and, near the black-hole horizon (radius), 
radiation quanta may escape, for a while, from the black 
hole. This is related to the so-called Hawking fl uctuating 
radiation [4]. If the black hole fl uctuates, i.e. if its mass M  and 
radius hR  fl uctuate, we may think that the black hole has an 
internal statistical motion and a thermodynamics. The current 
description of the statistical motion and the thermodynamics 
of a black hole raises serious questions [2]. This description 
assumes usually that the area of the black hole can only 
increase [5], as a consequence of accretion, so this area divided 
by the Planck area is a dimensionelss parameter which can 
only increase. Therefore, the reasoning goes further, it is an 
entropy, which may be equalized with the ratio of any two 

energies, one being viewed as heat, the other as temperature. 
This argumentation is insuffi cient to admit that the area of the 
black holes is proportional to their entropy.

The way to the statistical physics and the thermodynamics 
of a black hole is provided by the quantum motion of the 
radiation inside the hole. Indeed, the space quantization 
requires 

= ,hR n                 (1)

where n  is any positive integer and   is the radiation 
wavelength; on the other side, the time quantization requires 

2 '= = hcMc n


               (2)

for the energy   of the black hole, where h  is Planck’s 

constant and 'n  is a positive integer. Inserting equation (1) in 
equation (2) we get 

3
2 ' ' '= = = = ,

h

hc hc hcMc n nn nn
R GM

             (3)

whence we get 

2 2
'= = = ;h
hc c cM nn R n
G G G

               (4)

obviously, these equations can only be satisfi ed if '=n n  and 

3

= , = ,

= , = .h

hcM n
G

hGR n
c

 

 

              (5)

We can see that the mass is an integral multiple of the 
Planck mass   and the radius hR  is an integral multiple of 
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the Planck length   (up to a 2  factor). The energy of a 
black hole 0=n  is an integral multiple of the fundamental 

Planck energy 
5

2
0 = = hcc

G
   (Planck “temperature”), 

which corresponds to the Planck wavelength 0= /hc  . This 
particular circumstance of the quantization of the motion 
arises from the black hole condition 2= /hR GM c .

The frequency 
5

43 1
0= / = 10ch s

hG
    (the reciprocal of 

the Planck time) is very high; The Planck energy is of the order 
16

0 6 10 erg  , or 2810 eV , or 3210 K . Because of the 
extremely high frequency of these quanta we may call them 
black quanta.

The statistical physics of the quantum-mechanical motion 
described above is immediate; it corresponds to a single 
quantum-mechanical state of energy 0  occupied by n  black 
quanta; the number n  is the (main) statistical variable. The 
thermodynamic potential   (free energy F  ) is 

 0 0= = ln = ln 1 ,n

n
F T e T e                (6)

where = 1 /T   is the temperature (the chemical potential is 
zero and we include = 0n  in summation); the mean occupation 
number is 

0

1= ,
1

n
e 

              (7)

the mean energy is 2
0= = =E Mc n  and the entropy is 

 0 0
0

= = ln 1 ;
1

S e
T e



 

  
 

            (8)

we can see that the black hole has a mean mass 
2= /M E c  and a mean radius 2= /hR GM c . Also, we can see 

that 0S  for 0T   (according to the third principle of 
thermodynamics). The relative fl uctuation in the occupation 
number is 0/ = 1 1n n e   . This is also the relative 
fl uctuation in energy, mass, radius; it can be related to the 
entropy fl uctuation by using = ( 1)ln( 1) lnS n n n n    (which 
follows from equations (7) and (8). This latter formula shows 
that at equilibrium, for a given mean energy, the maximum of 
the entropy gives the mean occupation number n  in equation 
(7); and any change out of equilibrium decreases the entropy, 
as expected (in agreement with the law of increase of entropy 
- the second principle of thermodynamics).

At eqilibrium the thermodynamic potential is stationary (
= 0d ); since, on one hand, in equilibrium transformations, 
=d SdT   and, on the other, = = ( )d dF d E TS  , we get 
=dE TdS , i.e. the change in energy is, in fact, a change in 

the amount of heat. The temperature T  is a measure of the 
internal energy E  of the black hole (proportional to the 

mean mass M , or mean size hR ); according to equation (7), 
for 0T   no Planck mass (black quanta) is excited inside 
the black hole and /2 00( / ) TM c e    ; on the contrary, 
for 0T   a large number of black quanta are excited and 

2 2= ( / ) /hM c G R T c   .

The black holes may have an electric charge and, also, they 
may rotate; these external parameters may be included in the 
thermodynamics by adding to the energy 0=n  the energies 
q  and  L , where q  is the electric charge,   is its electric 
potential,   is the angular frequency and L  is the angular 
momentum; since 1 / hR  , the charge contribution is 
proportional to 1 /n ; similarly, since 2

hL R , the rotational 
term brings a contribution proportional to 2n . The full 
expression of the total energy, which is a function of n , is 
introduced in equation (6), which gives the thermodynamic 
potential. The contributions brought by electric charges or 
rotations to the thermodynamic properties are very small, such 
that they may be treated as corrections to the potential given 
by equation (6).

In conclusison, we may say that the quantization of the 
motion inside a black hole identifi es elementary excitations 
called black quanta, which correspond to Planck mass, 
wavelength, energy, frequency, time, etc. The statistics and the 
thermodynamics of these elementary excitations are computed 
explicitly in this paper.
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