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Abstract

Integral formulations based on a boundary-domain interpretation of the boundary element method 
(BEM) are applied to develop the numerical solutions of biharmonic and second order coupled linear and 
nonlinear boundary value problems. The governing multiple differential equations are converted to their 
integral analogs by applying the Green’s identity or by double integration. The resulting integral equations 
are put in matrix form and solved numerically to yield both the primary dependent variable and its spatial 
derivative. Available benchmark solutions are applied to test the reliability of the formulation. The results 
are found to be in conformity with the closed form solutions and also accurately represent the physics 
which the problems represent. 
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Introduction

Many real world problems are described by appropriate 
sets of differential equations which can be developed as 
models. These model equations are commonly differential 
equations which can either be linear or nonlinear. Since many 
of them defy analytic solutions, numerical techniques are often 
resorted to. Hence understanding the basic conservation laws 
that lead to the formulation of such problems in addition to 
the accompanying fl uxes are required in order to offer the 
correct interpretation of the computed results. If however the 
model is found inadequate and fails to reproduce physically 
meaningful results or is not in consonance with the physics of 
the problem, then the problem formulation is revisited based 
on the information gathered.

Developing accurate numerical techniques that enhance 
this process requires an ongoing development of new ideas and 
techniques which can effectively provide accurate numerical 
solutions.in affordable computing times. From a theoretical 
point of view, all the conservation laws that describe physical 
systems lead to fl uxes of the quantities conserved; for example, 
momentum, mass and energy fl uxes. To better understand these 
equations, we need measurable variables such as concentration, 
pressure, temperature etc. This requires the use of constitutive 
equations which relate the fl uxes to the gradient of scalar being 
transported. Examples of such equation are the Ficks, Fourier 
and Newton’s law of cooling. Once they are substituted into the 

governing partial differential equations, the fi nal form of such 
equations are obtained in terms of measurable quantities.

Partial differential equations by their very nature deal with 
continuous functions and must therefore have to be discretized 
in space and time to arrive at numerical solutions. Discretization 
results in a system of ordinary differential equations (ODE), 
which for real world application may comprise hundreds of 
evolution equations that must be handled numerically. There 
are numerous methods for achieving this objective. Going into 
this is way beyond the purpose of this paper. For the purposes 
of the work described herein we deviate from the classical 
boundary element (BEM) approach by adopting two types of 
domain –discretized integral formulation. It is found that the 
resulting system of discrete equation not possess ‘local support’ 
as if found in fi nite element method (FEM) formulation but in 
addition possess slender coeffi cient matrices which are easier 
to handle numerically unlike the square fully populated ones 
that result from classical application.

Mathematical formulation

Fourth-order boundary value problems including 
biharmonic differential equations are of huge signifi cance 
due to their several applications in such areas as applied 
physics and engineering. Numerical and analytical techniques 
have been proposed for the study of such problems (Momani 
and Noor) [1]. Semi-analytic techniques like the Adomian 
decomposition techniques including several of its variations 
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have been applied by several authors [2,3]. A ‘non-boundary 
only’ approach adopted herein circumvents all numerical 
perplexing issues related to nonlinearity and transient scalar 
distribution. The integral representation of a coupled system 
or multiple differential equations is given as [4], 
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Where the variable k represents the equation numbering 
system  1 k M  . M is he total number of equations and   
is a forcing function. Equation (1) is a general representation 
of the 1-D Poisson equation obtained by decoupling a fourth-
order differential equation. The boundary conditions at the two 
ends of the problem domain can be specifi ed as:

 1,1 1 2 1 3 2k Mk k k k k a        
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A quasi -linearization of the forcing function k  over each 
of the subdomains is initiated via the Taylor series. 
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The average value of dependent variable over an element at 
the current iteration level is

*
m . Equation (1) becomes:
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 We next introduce a weighted residual formulation for 
equation (3b) within a subdomain (a,b)
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We get rid of the second derivative of the dependent variable 
by integrating equation (4a) twice to obtain:

 
2

41 22 1

b b bb MdG d G
G dx G dx bmk k k k kma ma adx dxa
         


           

 

 We defi ne two weighting functions 1 2G and G  as
,1 2G x a G b x     respectively. Eq. (4a) becomes: 
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Next we approximate the dependent variable and its spatial 
derivative within each subdomain by introducing an osculating 
polynomial
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Where the functions i  are the osculating polynomials. 

The integral terms in equation (4c) are evaluated to fi nally give 

the following kth equation for each subdomain.
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 Details of the formulation together with the element level 

coeffi cient matrices can be found in [4]. A more elegant and 

robust formulation of the above procedure can be initiated by 

applying the Green’s second identity to the stationary part of 

the linear diffusion operator (the so called Laplace operator) to 

obtain a singular integral equation. We generalize equation (1) 

to include convection, reaction and transient terms as well as 

distributed load.
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 D is the dispersion coeffi cient,   is the dependent variable 
U is the velocity in the x-direction,  ,x t represents an 
external distributed source and   is the rate constant. The 
auxiliary equation  2 2d G dx x xi   in infi nite space is used to 
derive the free-space Green’s function 2G x x Ki    with a 
derivative    0.5dG dx H x x H x xi i       . These together with the 
Greens second identity are applied to equation (7a) to obtain 
its integral analog
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Lagrange-type interpolations are then applied to the 

dependent variable and its functions within a genetic element 

of the problem domain. That is j jP   where jP  is the 

interpolation function with respect to a node j . Introducing 

the interpolating function into the integral equation yields the 

element discrete equation
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 To test the reliability of the above formulations, we choose 
a fourth order beam-defl ection type differential equation 
whose closed form solution can easily be derived
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 The order of convergence, the 2L and L  norms of the two 
formulations are computed with the following formulas:

     
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where iN  is the number of elements. By the same token, 
2L and L  norms are defi ned as
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For the purposes of comparison, we shall call the fi rst 
formulation mod-1 and the latter mod-2. The numerical results 
are hardly distinguishable for this particular example. However 
Table 1 shows that mod-2 displays slightly better accuracy and 
convergence. 

We put the robustness of mod-2 to test by solving a beam 
defl ection problem in structural mechanics. A supported beam 
carries a uniform load of intensity 0w  and a tensile force N. 
The governing fourth order differential equation for the system 
is given by:
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Where EI is the bending rigidity and   is the displacement. 
The boundary conditions are 
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Changing the variables to 4
0,x L y EI w L    

converts equation (10a) into 
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With the following boundary conditions: 

 
2 2

0 12 2
0 1

8d d

d d
e 

  
  

   
 

 

We adopt the same decoupling procedure in example (1). 
Table 2 shows the displacement profi les and their gradients 
across the beam. Numerical results justify the relative signs 
of the variable . Identical values are recorded at the middle 
of the beam. 

Our next example deals with transient nonlinear fourth-
order equation that is described by the following equation:
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Where   3      , with initial and boundary conditions:
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Equation (11) is decoupled according to:
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Table 2:

Coordinates Displacement
 2.0    

Gradient 
 2.0  

Displacement
 2.0  

Gradient 
 2.0  

0.1 -0.5487e-01 -0.4467e+00 -0.3269e-01 -0.3075e+00

0.2 -0.9072e-01 -0.2754e+00 -0.6155e-01 -0.2666e+00

0.4 -0.1185e+00 -0.4476e+00 -0.1042e+00 -0.1518e+00

0.5 -0.1156e+00 0.7466e-01 -0.1156e+00 -0.7466e-01

0.65 -0.9573e-01 0.1850e+00 -0.1162e+00 -0.7466e-01

0.8 -0.6155e-01 0.2666e+00 -0.9072e-01 0.2754e+00

Figure 1: Time history of solution profi les.

Figure 2: Decay of transient solution profi le.

Table 1: Error Norms and Order of Convergence for mod-1 and mod-2.

No. 
Elements

2L  norm
(mod-1)

2L  norm
(mod-2)

Order of 
Convergence

(mod-1)

Order of 
Convergence

(mod-2)

L  
norm

(mod-1)

L  norm
(mod-1)

10 .012254 .008652 1.89752 1.99658 0.01287 .00231

20 .011536 .006592 1.97321 2.00791 0.00322 .00182

40 .0083712 .001229 2.01376 2.00362 .001462 .00108

Equation (9) is solved with mod-2 and the nonlinearity is 
resolved by the Picard algorithm. Figures 1,2, show how the 
nonlinear initial profi le decays with time
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Conclusion

Two integral formulations based on a boundary-domain 
interpretation of the boundary element method have been used 
to numerically solve a Biharmonic and second order coupled 
linear and nonlinear boundary value problems. Unlike the 
BEM both methods require that the domain of the problem 
be discretized in the space-time domain. As a result of this 
domain- localized integral approach, local support is obtained 
among the computational nodes, and the resulting coeffi cient 
matrix is slender and amenable to numerical manipulation.
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