
005

Citation: Gabriel Cedric PB. Enumerating Structures: Applications of the Hyperoctahedral Group in Combinatorial Species. Adv Appl Stat Probab. 2024; 1(1):005-008. 
Available from: https://dx.doi.org/10.17352/aasp.000002

EN
V

IR
O

N
M

EN
TA

L 
&

 A
G

R
IC

U
LT

U
R

A
L 

SC
IE

N
C

ES

https://dx.doi.org/10.17352/aaspDOI: 

OPEN ACCESS
JOURNALApplications in Statistics and Probability

Advances and

Introduction

In combinatorial mathematics, the study of structures and 
their classifi cations is a vibrant area that often employs the 
concept of combinatorial species. A combinatorial species [1-
3] provides a framework for counting and analyzing different 
structures (like graphs, trees, or permutations) by focusing 
on their combinatorial properties rather than their specifi c 
representations. This approach facilitates the comparison 
and enumeration of various confi gurations through the use of 
generating series [4,5].

An essential tool in this fi eld is the hyperoctrahedral group, 
which arises in the study of symmetries of higher-dimensional 
geometric objects. Specifi cally, the hyperoctahedral group 
describes the symmetries of an n -dimensional cube [6], 
capturing the essence of permutations and refl ections of 
its vertices. This group plays a crucial role in combinatorial 
enumeration and can be linked to various combinatorial species 
through its action.

To systematically analyze these species, mathematicians 
use ordinary generating series and exponential generating 
series. Ordinary generating series are particularly useful 
for counting sequences of combinatorial structures, while 
exponential generating series are tailored for structures where 
order matters, such as labeled objects.

The study of combinatorial species and the hyperoctahedral 
group is vital in understanding symmetrical structures and their 
properties in various mathematical contexts. Combinatorial 
species provide a framework for counting and categorizing 
combinatorial objects based on their structural characteristics, 
allowing for a deeper insight into their relationships and 
transformations.

This article, section 2 gives the theoretical foundations of 
combinatorial species and the hyperoctrahedral group Bn as a 
wreath product. The section 3 is devoted to the enumeration 
techniques based on the hyperoctrahedral group Bn.

Abstract

Combinatorial species provide a framework for counting and classifying for counting and classifying combinatorial structures. A species assigns a set of structures 
to each fi nite set, respecting the notion of isomorphism. This approach facilitates the enumeration of various combinatorial objects. The hyperoctahedral group, also 
known as the signed permutation group, consists of permutations of a set of signed elements. This group plays a crucial role in combinatorial algebra, particularly in 
the enumeration of certain structures, such as various types of trees and graphs. Generating series, both ordinary and exponential, are powerful tools in combinatorial 
enumeration. Combining these concepts allows for deeper insights into the relationships between structures and their enumerative properties, paving the way for advanced 
combinatorial theory and applications in various mathematical fi elds.
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Theoretical foundations

Combinatorial species: We consider the category B whose 
objects are the fi nite sets whose morphisms are the bijections, 
and the category ns of the fi nite sets whose morphisms are the 
functions. 

Defi nition 2.1 [7] A species of structures is a functor :F B ns  . 

This means that to any fi nite set U, we associate a fi nite 
set noted [ ]F U  whose elements are called the F-structures 
on U. To any bijection :U V  , we associate a function 

[ ]: [ ] [ ]F F U F V  , which we call transport morphism along  
from the F -structures on U to the F-structures of V. Moreover, 
we ask for the functoriality properties: For [ ] [ ]U r V r W  , we 
have [ ]= [ ] [ ]F F F      and for 1 :U U U , the identity of U, 

[ ][1 ]=1 .U F UF

It follows that for any bijection   the transport morphism 
F[] is a bijection. Indeed, for 

1
[ ] [ ]U r V r U  , we have 

1 1
[ ][ ] [ ]= [ ]= [1 ]=1U F UF F F F     

Similarly, we have 1
[ ][ ] [ ]=1 .F VF F    

So, [ ]F   admits as inverse 1[ ]F   . 

Isomorphisms  of species and isomorphism of F-structures:

Defi nition 2.2 [8] The species F and G are said to be isomorphic 
(and we write F G ) if there exists a natural isomorphism  between 
the functors F and G. 

This means that to any fi nite set U, we associate a bijection 

: [ ] [ ]U F U G U   such that for any bijection :U V  , we have 

[ ] = [ ]U VG F     . The following diagram commutes 

[ ] [ ][ ][ ] [ ] [ ][ ] [ ][ ] [ ]F GVF U r d F V d G U r G V
U

 


Defi nition 2.3 Two F-structures 1t  on U and 2t  on V are 

said to be isomorphic, if there exist :f U V , bijection, such that 

1 2[ ]( )=F f t t . We then write 1 2t t . The relation (being isomorphic) is 

an equivalent relation on [ ]T U , and we denote the set of equivalence 

classes (or isomorphy classes or types of F-structures on U by [ ]/ .F U 

Proposition 2.1 Let US  and [ ]F US  be the groups of permuta-

tions of U and [ ]F U  respectively. Then the map defi ned by the 

following is a homomorphism of groups

 h : 
US      [ ]F US

 

      [ ]F   

Proof 2.1 We have: , ;U  S  

( )= [ ]= [ ] [ ]= ( ) ( ).h F F F h h          

Remark 2.1 This amounts to saying that we have an action of US  on 

[ ]F U . We note, that for [ ], ( )= ( )={ | [ ]( )= }Ut F U aut t Stab t F t t  S   

we call the group of automorphisms of t. We will write t   instead 

[ ]( )F t . 

Remark 2.2 For any species F, there exists a (called associated) 
species F  defi ned by: 

[ ]={( , )| [ ], = }UF U t t F U and t t     S

And for any bijection :f U V  

 [ ]F f : [ ]F U      [ ]F V  

( , )t 
     

1( [ ]( ), )F f t f f  

Remark 2.3 When ( )={ }Uaut t id , we say that t is an asymmetric 

(or rigid or fl at) F-structure on U. 

Defi nition 2.4 The fl at part of a species F is the subspecies F F  

defi ned by [ ]={ [ ]| }F U t F U t is asymmetric  where the transport 

morphisms along the bijections are obtained by restriction. 

Remark 2.4 We have F F F    where we identify t  with ( , )t id

. In a certain sense F  measures the asymmetry and F  the symmetry 
of the F-structures. 

Hyperoctah edral group: The symmetric group nS  can 
be considered as a matrix group where n n -matrices are 
permutation matrices (only one 1 per row and column, 
0elsewhere) [9,10]. 

Let n S , [ ]i n  ; ( )=i j , [ ]j n .

( ) =   = =1( )i j a aji i i  at the ith column. This practice 

generalizes for the hyperoctahedral group, Bn, with the 

difference that the 1 of each row and column can be replaced by 
−1 (matrices of signed permutations). 

Take the following matrix as an example: 

1  0  0
0  0  1
0 -1  1

 
 
 
 
 

that can be noted (1,1, 1;(1)(23))=( , )f   where 3 S , 

:[3] {1, 1}f    and f(i) denotes the non-zero element of the 

ith row of the matrix. We can generalize this notation by the 

following defi nition.

Defi nition 2.5 (Hyperoctahedral group as a wreath product) 

Let G be a fi nite group, H a subgroup of nS . Let’s pose: 

={( , )| :[ ] ; }.G H f f n G H  

G H  is a group with the following composition 

( , )( , )=( , )f f ff     

where f  denotes 1f     and ( )( )= ( ) ( )ff i f i f i  , [ ]i n . The 

identity element is ( , )He id  where ( )= Ge i id , [ ]i n . The inverse 
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1 1 1
1( , ) =( ; )f f


   

 . 

Bn is isomorphic to 2 nS S  [3], when the notation is abused 

by replacing in the permutation matrix 
2

{ (12)}id and
S

 by 1 and 

−1 respectively. In other words, we have: 2=n nB S . 

The hyperoctrahedral group Bn has subgroups: 

• ={( , )| };n
HG f id f G   

• ={( , )| };nG
H e H  

• ( )={( , )| ( )= , [ ], }.HDiag G f id f i g i n g G  

In general, if we have a fi nite group G and H a subgroup of 

nS , the wreath product G H  is the right semi-direct product 
of Gn by H with the following operation: 

1 1 (1) 1 ( )( , , , )( , , , )=( , , , ).n n s s n ng g s g g s g g g g s s       

In particular, it is easy to verify that (1 , ,1 ,1 )G G H  is 
the unit element of G H  and the inverse of 1( , , , )ng g s  is 

1 1 1
1 1(1) ( )

( , , , )
s s n

g g s  
  . 

Given the coxeter group of type nB ; 2=n nB S  is the 
wreath product of 2  with the symmetric group nS . So the 
following sequence is exact and short. 

20[ ] [ ] [ ] [ ]0n
n nr r i B r r  S

Moreover, the section s verifi es = .
n

s id 
S

Generating series of a species of structures on Bn

The  radius of convergence: In mathematics, the radius of  
convergence refers to the interval within which a power series 
converges to a function. For a power series of the form 

( ) ,
=0

na x cnn


                  (1)

Where an are the coeffi cients and c is the center of the 
series, the radius of convergence R can be determined using 
the formula: 

11 = | |lim nsup annR                  (2)

This means that the series converges for all x such that 

| |<x c R  and diverges for | |>x c R . At the endpoints | |=x c R

, the behavior of the series must be checked individually. 

Generating series on Bn:

Defi nition 3.1 The generating series  of a species of structures F 
on Bn is the formal power series 

( ) = ,
2 !=0

nxF x fn n nn




                (3)

where =| [ ]|=nf F n  the number of F-structures on a set of 

n elements (labelled structures). Note that this series is a 
hyperoctahedral exponential type in the indeterminate x in 

sense that 2 !n n  appears in the denominator of the term of 
degree n. 

The series F(x) is also called the hyperoctahedral exponential 
generating series of the species F. The following notation is 
used to designate the coeffi cients of formal power series. For a 
hyperoctahedral ordinary formal power series 

( ) = ,
0

nG x g xnn



                  (4)

we set 

[ ] ( ) = .nx G x gn                (5)

For a formal power series of hyperoctahedral exponential 
type, we then have 

(2 !)[ ] ( ) = .n nn x F x fn               (6)

Relationship between hyperoctahedral ordinary and 
hyperoctahedral e xponential generating function: 

Lemma 3.1 Let 0( )n ng  , let 

( ) =
0

nG x g xnn



              (7)

be its hyperoctahedral ordinary generating function and 

( ) =
2 !=0

nxF x fn n nn




                 (8)

its hyperoctahedral exponential generating function. Then F(x) 
has an infi nite radius of convergence. 

Proof 3.1 Let >0R  be arbitrary. Let us show that for all | |x R
, the series 

| |
2 !=0

nxfn n nn




                (9)

converges. By hypothesis, there exist >0c  and >0d  such that 

| | n
nf c d   for all n. We have for all | |x R : 

( )| | , 0
2 ! 2 !

n nx c d Rf nn n nn n
   

 
               (10)

and so 

( )| | = exp( ).
2 ! 2 !=0 =0

n nx d Rf c c d Rn n nn nn n

    
 

             (11)

Proposition 3.1 Let 0( )n ng   be a sequence whose hyperoctahedral 

ordinary generating function in G(x) and whose hyperoctahedral 

exponential generating function is F(x). Let >0R  the radius of 

convergence of ( )G x . Then, we have for all | |<x R : 

( ) = ( )0
tG x e F xt dt                  (12)

and the integral converges uniformly on the disk { :| |< }x x r  
where 0< <r R . 
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Proof 3.2 Fix 0< <r R . We choose R  such that 0< < <r R R  

and we set = <1r
R


 . By hypothesis, there exists >0c  such that 

| | n
nf R c   for all n  since the series n

nn
f R  converges and therefore 

| | | | .n n nf x f r c nn n                     (13)

Then we have for all integer >0N  and for all | |x r : 

( ) (1 )| | =
2 ! 2 ! 2 !=0 =0 =0

n t n t nN N Nt e t e c tn n tf x c ce cen n n nn n nn n n
 

      
  

 

                 (14)

which is integrable over [0, [ . By the Dominated Convergence 

Theorem, we get: 

( ) = =0 0 2 !=0 =0

n tt et n ne F xt dt f x dt g xn nn nn n

      
            (15)

since = 2 !0
n t nt e dt n    for all n.

Finally, we also have 

(1 )| | | |
2 !=0

n tt e tnf x ce x rn n nn
    

             (16)

and then 

| ( ) ( ) |= | ( ) |sup sup0| | | |
b t te F xt dt G x e F xt dtbx r x r

  
 

(1 )tce dtb
   

(1 )
=

1

bce 



 



which tends to 0 when b  . 

Conclusion

In conclusion, the study of the hyperoctahedral group 
and its applications in combinatorial spe cies reveals 
profound connections between algebra and combinatorics. By 
enumerating structures through the lens of the hyperoctahedral 

group, we uncover rich combinatorial objects and relationships 
that enhance our understanding of symmetry and structure. 
This interplay not only provides a robust framework for 
classifying and counting various confi gurations but also opens 
avenues for further exploration in both mathematical theory 
and practical applications.
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